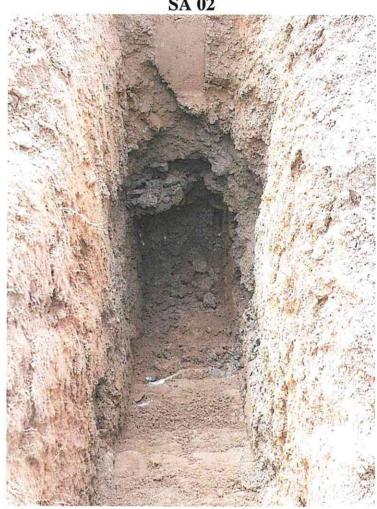
f -value from field tests Soakaway Design IGS Contract: Monaghan, Active Travel 24665 Test No. SA03 **Engineer CORA** Date: 04/05/2023 Summary of ground conditions from to Description Ground water TOPSOIL 0.00 0.30 0.30 1.60 Firm to stiff, greyish brown, slightly sandy gravelly slightly silty CLAY with high cobbles and low boulders content DRY Location: E:667448.448; N:833888.586; G.L. 83.582mOD Notes: SA03 done for Civic Offices project Field Data Field Test Depth to Elapsed Depth of Pit (D) 1.60 m Water Time Width of Pit (B) 0.50 m (m) (min) Length of Pit (L) 2.00 0.540 0.00 Initial depth to Water = 0.54 m 0.540 1.00 Final depth to water = 0.55 m 0.540 2.00 Elapsed time (mins)= 30.00 0.540 3.00 0.550 4.00 Top of permeable soil m 0.550 5.00 Base of permeable soil 0.550 6.00 Water movement stoped at 0.55m 0.550 7.00 0.550 8.00 0.550 9.00 0.550 10.00 Base area= 1 m2 0.550 12.00 *Av. side area of permeable stratum over test period 5.275 m2 14.00 0.550 Total Exposed area = 6.275 m2 0.550 16.00 0.550 18.00 0.550 20.00 Infiltration rate (f) = Volume of water used/unit exposed area / unit time 0.550 25.00 0.550 30.00 f= 5.3E-05 m/min or 8.85347E-07 m/sec Depth of water vs Elapsed Time (mins) 35.00 30.00 Time(mins) 25.00 20.00 15.00 10.00 5.00 0.00 0.540 0.542 0.538 0.544 0.546 0.548 0.550 0.552 Depth to Water (m)

f -value from field tests Soakaway Design IGS Contract: Monaghan, Active Travel 24665 Test No. SA04 **Engineer CORA** Date: 04/05/2023 Summary of ground conditions from Description to Ground water 0.00 TOPSOIL 0.25 0.25 0.50 Soft, brown, sl. sandy sl. gravelly CLAY with low cobbles and hair rrots content 0.50 1.30 Firm to stiff, brown, slightly sandy gravelly CLAY with high subangular to subrour DRY cobbles and low boulders content 1.30 Obstruction - boulders Location: E:667494.53; N:833936.177; G.L. 79.506mOD Notes: SA04 done for Civic Offices project Field Data Field Test Depth to Elapsed Depth of Pit (D) 1.30 m Water Time Width of Pit (B) 0.50 m (m) (min) Length of Pit (L) 1.50 0.480 0.00 Initial depth to Water = 0.48 m 0.480 1.00 Final depth to water = 0.48 m 0.480 2.00 Elapsed time (mins)= 30.00 0.480 3.00 0.480 4.00 Top of permeable soil m 0.480 5.00 Base of permeable soil 0.480 6.00 No Water Movement 0.480 7.00 0.480 8.00 0.480 9.00 0.480 10.00 Base area= 0.75 m2 0.480 12.00 *Av. side area of permeable stratum over test period 3.28 m2 14.00 0.480 Total Exposed area = 4.03 m2 0.480 16.00 0.480 18.00 0.480 20.00 Infiltration rate (f) = Volume of water used/unit exposed area / unit time 0.480 25.00 0.480 30.00 f= 0 m/min or 0 m/sec Depth of water vs Elapsed Time (mins) 35.00 30.00 Time(mins) 25.00 20.00 15.00 10.00 5.00 0.00 0.000 0.100 0.200 0.300 0.400 0.500 0.600 Depth to Water (m)

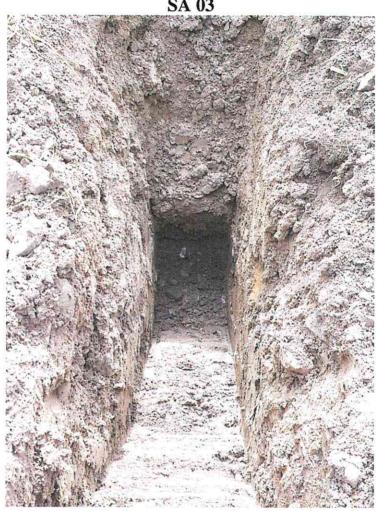
Site: Monaghan Active Travel Project Engineer: DBFL/CORA

TRIAL PIT PHOTOGRAPHY RECORD SA 01



Site: Monaghan Active Travel Project Engineer: DBFL/CORA

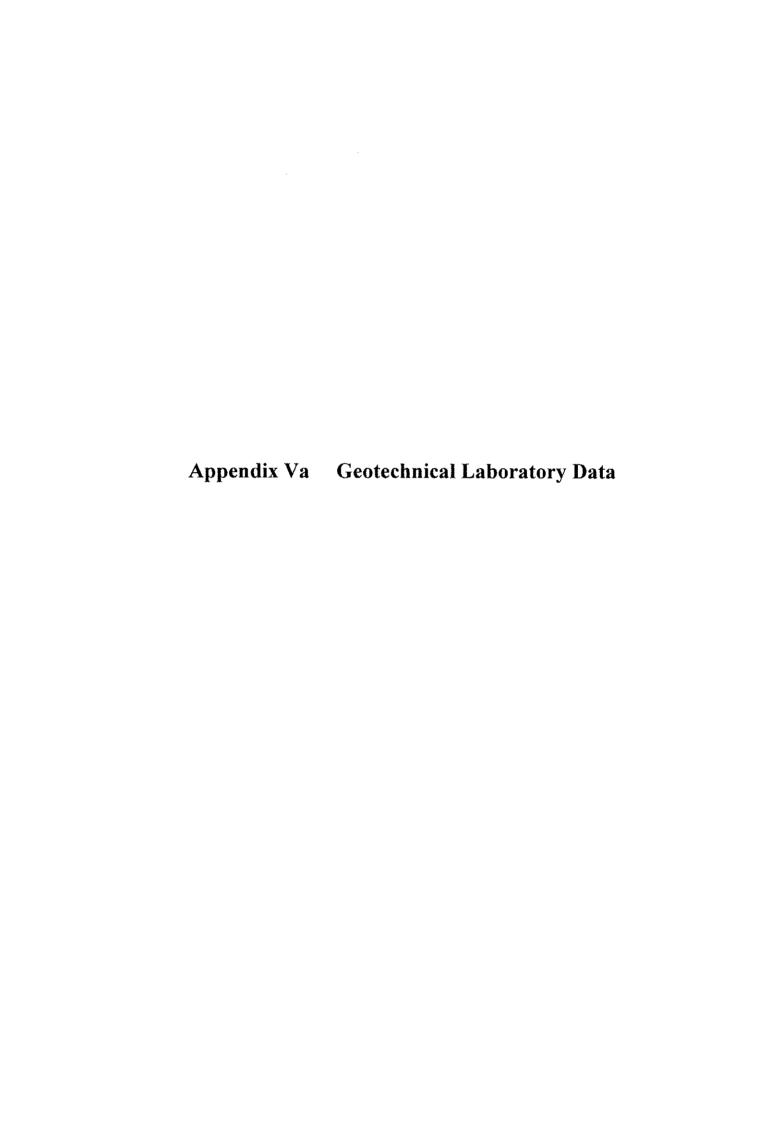
TRIAL PIT PHOTOGRAPHY RECORD SA 02



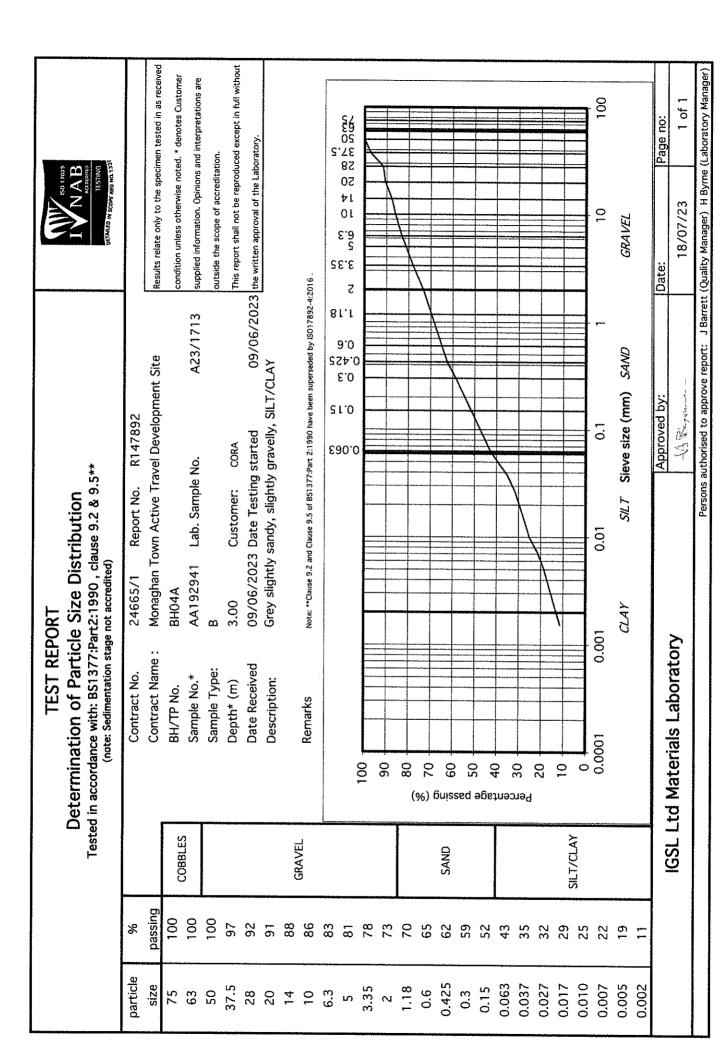
Site: Monaghan Active Travel Project Engineer: DBFL/CORA

TRIAL PIT PHOTOGRAPHY RECORD SA 03

Site: Monaghan Active Travel Project Engineer: DBFL/CORA



TRIAL PIT PHOTOGRAPHY RECORD SA 04



SA 04 – spoil

SEELEN AND THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUM	IWNAB	DETAILED IN SCOPE NEO NO. 1331					АУ	Αγ	ΑY	<u> </u>	ly CLAY	ly CLAY										ormation,		Page	1 of 1
			Monaghan Town Active Travel Development Site			Description	Brown sandy gravelly CLAY	Brown sandy gravelly CLAY	Brown sandy gravelly CLAY	Brown sandy gravelly SILT	Grey brown sandy gravelly CLAY	Grey brown sandy gravelly CLAY								Results relate only to the specimen tested, in as received condition unless otherwise noted.	892-12.	Opinions and interpretations are outside the scope of accreditation." denotes Customer supplied information.	This report shalf not be reproduced except in fullwithout written approval from the Laboratory.		18/07/23
		3**	iive Travel			Classification (BS5930)	70	70	- 0		CL	70								adition unless	92-1 and EN17	ditation. * deno	ten approval fr		
	lic Limits	3, 4.4 & 5.	Town Act			Preparation Liquid Limit	4.4	4.4	4.4	4.4	4.4	4.4								as received co	ded by EN 178	scope of accre	fullwithout writ	ρλ	一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一
	d & Plast	ises 3.2, 4.	Monaghar			ļ	WS	WS	SM	MS	WS	WS								cimen tested,in	NOTE: "These clauses have been superceded by EN 17892-1 and EN17892-12.	are outside the	fuced except in	Approved by	多字
oort	ent, Liqui	:1990, clau	Vame:			% <425µm	67	99	71	85	61	72								only to the sper	e clauses have	nterpretations	all not be reproc		
Test Report	ure Conte	377:Part 2	Contract Name:			Plasticity Index	14	16	17	М	14	14							Remarks:	Results relate	NOTE: "Thes	Opinions and i	This report sha		Aanager)
 	of Moist	e with BS1				Plastic Limit %	14	17	19	ď	16	19							Irbed	P 3				ve reports	aboratory A
	Determination of Moisture Content, Liquid & Plastic Limits	in accordance with BS1377:Part 2:1990, clauses 3.2, 4.3, 4.4 & 5.3**	24665/1		09/06/23	Liquid Limit %	28	33	36	32	30	33							B - Bulk Distu	U - Undisturbed				ized to appro	H Byrne (Laboratory Manager)
	Deter	Tested in	No.		ited:	Moisture Content %	18	14	16	19	14	14							Sample Type: B - Bulk Disturbed					Persons authorized to approve reports	
			Contract No.		Date Tested:	Sample Type*	В	В	В	В	В	æ							•			method			
					09/06/23	Lab. Ref	A23/1710	A23/1711	A23/1712	A23/1714	A23/1716	A23/1717										meter definitive	meter one poin		boratory
			R147891	Cora	eived:	Jepth* (m)	2.0	1.0	1.0	1.0	0.7	9.0							WS - Wet sieved	AR - As received	NP - Non plastic	4.3 Cone Penetrometer definitive method	4.4 Cone Penetrometer one point method		teriais La
ratory	usiness Park		Report No.	Customer	Samples Received:	Sample No. Depth* (m)	AA192933	AA197802	AA192935	AA192947	AA200193	AA200179	************				******		Preparation: W	∢		Ϊ	Clause: 4.		IGSL Ltd Materials Laboratory
IGSL Ltd Materials Laboratory	Unit J5, M7 Business Park Newhall, Naas	Co. Kildare 045 846176				ВН/ТР*	BH01	BH02	BH03	BH05	TP01	TP03			*****									<u>`</u>	<u>5</u>

TEST REPORT Determination of Particle Size Distribution

Tested in accordance with: BS1377:Part2:1990 , clause 9.2 & 9.5** (note: Sedimentation stage not accredited)

particle	%			Contract No.	24665/1	Report No.	R147893			
size	passing			Contract Name:	Monaghan T	own Active Tra	Monaghan Town Active Travel Development Site	t Site	Results relate only to the specimen tested in as received	nen tested in as received
75	100	CORRIEC		BH/TP No.	BH08		-		condition unless otherwise noted. * denotes Customer	d. * denotes Customer
63	100	CORRECT		Sample No.*	AA192947	Lab. Sample No.	No.	A23/1715	supplied information. Opinions and interpretations are	nd interpretations are
20	94			Sample Type:	В				outside the scope of accreditation.	on.
37.5	94			Depth* (m)	2.00	Customer:	CORA		This report shall not be reproduced except in full without	ced except in full without
28	89			Date Received	09/06/202	09/06/2023 Date Testing started	started	09/06/2023	09/06/2023 the written approval of the Laboratory.	oratory.
20	88			Description:	Grey sandy,	Grey sandy, slightly gravelly, SILT/CLAY	, SILT/CLAY			
4	98	GRAVFI								
10	85	77 A LAID		Remarks	Note: **Clause 9.2 a	ind Clause 9.5 of BS1377	Part 2:1990 have been s	Note: **Clause 9.2 and Clause 9.5 of BS1377:Part 2:1990 have been superseded by ISO17892-4:2016	2016.	
6.3	82							\$2		Ş.
S	80						0.0 r.0	E.O S4.O ∋.O	3.3 5.6.3 10 10 14 20 20 20 3.8	28 20 50 53 54
3.35	2.2		100							
2	74		06							
1.18	72		8 (
9.0	29		2 %) f					\ 		
0.425	64	SAND	gniza							
0.3	58									
0.15	48									
0.063	38		cent							
0.037	31									
0.027	28		- 07							
0.017	25	CH T/CI AV	9							
0.010	22	2	0							
0.007	13		0.0	0.0001 0.0	.001	0.01	0.1	,	10	100
0.005	17				CLAY	SILT Si	Sieve size (mm) SAND	SAND	GRAVEL	
0.002	10			The state of the s						
		1001	A 1 1 1 2 2 2 2	neter to the train			Approved by:		Date:	Page no:
		IGSL L	.ta Mater	IGSL Ltd Materiais Laboratory	>		一个多一个		18/07/23	1 of 1
						Persons a	Persons authorised to approve report:		J Barrett (Quality Manager) H Byrne (Laboratory Manager)	(Laboratory Manager)

Determination of Particle Size Distribution Tested in accordance with: BS1377:Part2:1990, clause 9.2 & 9.5** (note: Sedimentation stage not accredited) **TEST REPORT**

particle	%			Contract No.	24665/1 Report No.	R147894		
size	passing			Contract Name:	Monaghan Town Active Travel Development Site	vel Development Site	Results relate only to the specimen tested in as received	en tested in as received
7.5	100	CORRIEC		BH/TP No.	TP05		condition unless otherwise noted. * denotes Customer	* denotes Customer
63	100	CORRECT		Sample No.*	AA200182 Lab. Sample No.	No. A23/1718	supplied information. Opinions and interpretations are	interpretations are
20	100			Sample Type:	В		outside the scope of accreditation.	<u>م</u>
37.5	100			Depth [⋆] (m)	0.70 Customer:	CORA	This report shall not be reproduced except in full without	d except in full without
28	66			Date Received	09/06/2023 Date Testing started		09/06/2023 the written approval of the Laboratory.	atory.
20	86			Description:	Brown slightly sandy, slightly gravelly, SILT/CLAY	ly gravelly, SILT/CLAY		
14	96	CDAVC						
10	95	GRAVEL		Remarks	Note: **Clause 9.2 and Clause 9.5 of 8S1377	Note: **Clause 9.2 and Clause 9.5 of BS1377-Part 2:1990 have been superseded by ISO17892-4:2016 .	2016,	
6.3	93			***************************************	***************************************	S		S
Ŋ	92					90.0 1.0 5.0 3.0 1.1	3.3 56.3 10 14 20 28	28 28 37 50 83 50 50 50
3.35	96		100					
2	87		06					
1.18	84		80					
9.0	83		2 %) (
0.425	79	SAND	gnie					
0.3	22							
0.15	99							
0.063	55							
0.037	46							
0.027	41		50					
0.017	35	CII T/CI AV	10					
0.010	29		0					
0.007	56		0.0	0.0001 0.001	0.01	0.1	10	100
0.005	21				CLAY SILT SI	Sieve size (mm) SAND	GRAVEL	
0.002	14			SERVICE CO. C.				
		1001	1 1 1 1 2 2 2	1 -1 -1 -1		Approved by:	Date:	Page no:
		IGSE E	to mate	IGSL Ltd Materials Laboratory	>	- V.J. B. y Excession	18/07/23	1 of 1

1 of 1

18/07/23

Approved by:

IGSL Ltd Materials Laboratory

Page no:

Date:

Determination of Particle Size Distribution Tested in accordance with: BS1377:Part2:1990, clause 9.2 & 9.5** (note: Sedimentation stage not accredited) **TEST REPORT**

particle	%		_	Contract No.	24665/1 Report No. R147895	
size	passing			Contract Name:	Monaghan Town Active Travel Development Site	Results relate only to the specimen tested in as received
22	100	CORRIEC		3H/TP No.	TP09	condition unless otherwise noted. * denotes Customer
63	100	67766		Sample No.*	AA200191 Lab. Sample No. A2	A23/1719 supplied information. Opinions and interpretations are
20	100		~ /	Sample Type:	8	outside the scope of accreditation.
37.5	96		ا ست	Depth* (m)	0.70 Customer: CORA	This report shall not be reproduced except in full without
28	95			Date Received	09/06/2023 Date Testing started 0'	09/06/2023 the written approval of the Laboratory.
20	91			Description:	Grey brown sandy, slightly gravelly, SILT/CLAY	
4	88	13/1/05				
10	85	GNAVEL		Remarks	Note: **Clause 9.2 and Clause 9.5 of BS1377.Part 2:1990 have been superseded by ISO17892-4:2016	by iSO17892-4:2016 ,
6.3	8				S	CT 88
ιΩ	78		1		90.0 11.0 5.0	0.6 3.3 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5
3.35	74		100			
2	69		- 06			
1.18	65		+ 08 °			
9.0	09		2 %) f			
0.425	56	SAND	gnie:			
0.3	51					
0.15	39					
0.063	28					
0.038	23					
0.027	21		- 707			
0.017	8	CII T/CI AV	10 +			
0.010	16		<u> </u>			
0.007	15		0.0001	0.001	0.01 0.01	10 100
0.005	12				CLAY SILT Sieve size (mm) SAND	C GRAVEL
0.002	6					

TEST REPORT Determination of Particle Size Distribution Tested in accordance with: BS1377:Part2:1990, clause 9.2 & 9.5** (note: Sedimentation stage not accredited)

L_									A STANKE REG MO. 13.4.		
	particle	%			Contract No.	24665/1 Report No.	R147896	•			-
	size	passing		#	Contract Name:	Monaghan Town Active Travel Development Site	avel Development Site		Results relate only to the specimen tested in as received	en tested in as received	
	75	100	CORRIES		BH/TP No.	TP12			condition unless otherwise noted. * denotes Customer	. * denotes Customer	
	63	100	CORRECT		Sample No.*	AA205178 Lab. Sample No.	No. A23/1720	1720	supplied information. Opinions and interpretations are	d interpretations are	
	20	06			Sample Type:	ω			outside the scope of accreditation.	Ġ.	
	37.5	82			Depth* (m)	0.80 Customer:	CORA		This report shall not be reproduced except in full without	ed except in full without	
•••••	28	80			Date Received	09/06/2023 Date Testing started)6/2023	09/06/2023 the written approval of the Laboratory.	atory.	_
	20	75			Description:	Brown slightly sandy, gravelly, SILT/CLAY		•			_
	4	7.1	CDAVE								
	10	89	1		Remarks	Note: **Clause 9.2 and Clause 9.5 of BS1377;Part 2:1990 have been superseded by ISO17892-4:2016 ,	77:Part 2:1990 have been superseded by	15017892-4:20	16.		
****	6.3	63				AND ADDRESS OF THE PERSON NAMED IN THE PERSON	S		The state of the s	S	
	52	09					90.0 1.0 €.0 S₱.0	ויו	3.8 8.8 8.9 14 82 82	28 28. 37. 503 503 503 503	
*****	3.35	57		100							
	2	52		06							
	1.18	48		80							
	9.0	42		2 1 (%							
	0.425	39	SAND	gnie							
	0.3	34							\ \		
·	0.15	53						1			
	0.063	20									
<u>-</u>	0.038	17					\				
	0.027	15		20							
	0.017	13	CH T/CI AV	10							
	0.010	12	S-1-15	0							
	0.007	11		õ	0.0001 0.001	0.01	0.1		10	100	
·····	0.005	თ				CLAY SILT	Sieve size (mm) SAND		GRAVEL		
	0.002	7			THE PARTY STORMS STORMS STORMS STORMS	A THE					
			- 1001	44 1424			Approved by:		Date:	Page no:	
			192F L	to Mate	IGSL Ltd Materials Laboratory	λ	(18 x xxxxxxx		18/07/23	1 of 1	
-					THE REAL PROPERTY OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COL					Barner 1	

1 of 1

18/07/23

Approved by:

IGSL Ltd Materials Laboratory

Page no:

Date:

		>	DETAILED IN SCO
TEST REPORT	Determination of Particle Size Distribution	Tested in accordance with: BS1377:Part2:1990, clause 9.2 & 9.5**	(note: Sedimentation stage not accredited)

10:11:00	6							
particle	8			Contract No.	24665/1 Report No.	40. R147897		
size	passing			Contract Name:	Monaghan Town Active	Monaghan Town Active Travel Development Site	Results relate only to the	Results relate only to the specimen tested in as received
22	90	CORRIFS		BH/TP No.	TP14		condition unless otherwise	condition unless otherwise noted. * denotes Customer
63	100			Sample No.*	AA205176 Lab. Sample No.		A23/1721 supplied information. Opin	supplied information. Opinions and interpretations are
20	100			Sample Type:	മ		outside the scope of accreditation.	ditation,
37.5	93			Depth* (m)	1.50 Customer:	er: CORA	This report shall not be re	This report shall not be reproduced except in full without
28	89			Date Received	09/06/2023 Date Testing started		09/06/2023 the written approval of the Laboratory.	Laboratory.
20	98			Description:	Grey brown slightly sar	SILT/CLA		
4	82	CDAVE						
10	2.2	פֿעאַ	-t-Walla tama	Remarks	Note: **Clause 9.2 and Clause 9.5 of	Note: **Clause 9.2 and Clause 9.5 of BS1377;Part 2:1990 have been superseded by ISO17892-4:2016	y ISO17892-4:2016 .	
6.3	72				A. C.	S	8	S
Ŋ	69					90.0 1.0 8.0	0.6 3.3 3.3 5.6.3 10 10	28 28. 37. 58. 58. 58. 58.
3.35	09		100					
2	53		06					X
1.18	49		80					
9.0	45		2 %) f					
0.425	43	SAND	Suiz:					
0.3	40							
0.15	34							
0.063	56							
0.038	23							
0.027	21		50					
0.017	19	CII T/CI AV	10					
0.010	17	5777	Ó					
0.007	15		O.O	0.0001 0.00	0.01	0.1	1 10	100
0.005	13				CLAY SILT	7 Sieve size (mm) SAND	GRAVEL	
0.002	10							

IGSL Ltd Materials Laboratory Unit J5,M7 Business Park

Naas

Co. Kildare

Test Report

Determination of Moisture Condition Value at Natural Moisture Content

Tested in accordance with BS1377:Part 4:1990, clause 5.4

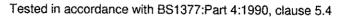
045 899324	100.00 11 00001001100	7 Will D07077.1 art 4.1990, clause 3.4
	Report No.	R147898
	Contract No.	24665/1
	Contract Name:	Monaghan Town Active Travel Development Site
	Customer:	CORA
	BH/TP*	TP01
	Sample No.*	AA200193
	Depth* (m)	0.70
	Sample Type:	В
	Lab Sample No.	A23/1716
	Source* (if applicable)	N/A
	Material Type* (if applicable):	В
	Sample Received:	09/06/23
	Date Tested:	09/06/23
	Sample Cert:	Not Provided
	Moisture Content (%):	15
	% Particles > 20mm (By dry mass):	16
	MCV:	6.6
	Interpretation of Plot:	Steepest Straight Line
	Description of Soil:	Grey brown sandy gravelly CLAY

Results relate only to the specimen tested, in as received condition unless other	rwise noted.	Persons authorised to	approve reports
Opinions and interpretations are outside the scope of accreditation.		J Barrett (C	uality Manager)
* denotes Customer supplied information.		H Byrne (La	aboratory Manager)
This report shall not be reproduced except in full without written approval from t	he Laboratory.		
	Approved by	Date	Page
IGSL Ltd Materials Laboratory	48	918/7	1 of 1

File: R147898 TP01 @ 0.7m MCV

IGSL Ltd

Materials Laboratory Unit J5,M7 Business Park


Naas

Co. Kildare 045 899324

Test Report

Determination of Moisture Condition Value at Natural Moisture Content

Report No. R147899 Contract No. 24665/1

Contract Name: Monaghan Town Active Travel Development Site

Customer: CORA

BH/TP* TP03

Sample No.* AA200179

Depth* (m) 0.60

Sample Type:

Lab Sample No. A23/1717

Source* (if applicable) N/A

Material Type* (if applicable): В

Sample Received: 09/06/23

Date Tested: 09/06/23

Sample Cert: Not Provided

Moisture Content (%): 13

% Particles > 20mm 15

(By dry mass):

MCV: 7.3

Interpretation of Plot: Steepest Straight Line

Description of Soil: Grey brown sandy gravelly CLAY

Results relate only to the specimen tested, in as received condition unless otherwise noted. Opinions and interpretations are outside the scope of accreditation.

Persons authorised to approve reports J Barrett (Quality Manager)

denotes Customer supplied information.

This report shall not be reproduced except in full without written approval from the Laboratory.

H Byrne (Laboratory Manager)

IGSL Ltd Materials Laboratory

Approved by	Date	Page
M. B. Jan	18/07/23	1 of 1

IGSL Ltd Materials Laboratory Unit J5,M7 Business Park

Naas

Test Report

Determination of Moisture Condition Value at Natural Moisture Content

			Outlon	TESTI
Co. Kildare 045 899324	***************************************	Tested in accord	dance with BS1377:Part 4:1990, clause 5.4	DETAILED IN SCOPE AEG NO
	Report No		R147900	
	Contract N	o.	24665/1	
	Contract N	ame:	Monaghan Town Active Travel Developm	nent Site
	Customer:		CORA	
	BH/TP*		TP05	
	Sample No).*	AA200182	
	Depth* (m)		0.70	
	Sample Ty	pe:	В	
	Lab Sampl	e No.	A23/1718	
	Source* (if	applicable)	N/A	
	Material Ty	pe* (if applicable):	В	
	Sample Re	ceived:	09/06/23	
	Date Teste	d:	09/06/23	
	Sample Ce	ert:	Not Provided	
	Moisture C	ontent (%):	13	
	% Particles (By dry ma		11	
	MCV:		6.8	
	Interpretation	on of Plot:	Steepest Straight Line	
	Description	of Soil:	Brown slightly sandy, slightly gravelly, SIL	_T/CLAY

Results relate only to the specimen tested, in as received condition unless othe	wise noted.	Persons authorised to	approve reports
Opinions and interpretations are outside the scope of accreditation.		J Barrett (C	uality Manager)
denotes Customer supplied information.		H Byrne (La	aboratory Manager)
This report shall not be reproduced except in full without written approval from t	he Laboratory.		
	Approved by	Date	Page
IGSL Ltd Materials Laboratory	4 Ryan	18/07/23	1 of 1

IGSL Ltd Materials Laboratory

Unit J5,M7 Business Park

Naas

Test Report

Determination of Moisture Condition Value at Natural Moisture Content

Co. Kildare 045 899324		Tested in accordance with BS1377:Part 4:1990, clause 5.4			
	Report No	í.	R147901		
	Contract N	o.	24665/1		
	Contract N	ame:	Monaghan Town Active Travel Developme	ent Site	
	Customer:		CORA		
	BH/TP*		TP09		
	Sample No).*	AA200191		
	Depth* (m)		0.70		
	Sample Ty	pe:	В		
	Lab Sampl	e No.	A23/1719		
	Source* (if	applicable)	N/A		
	Material Ty	rpe* (if applicable):	В		
	Sample Re	ceived:	09/06/23		
	Date Teste	d:	09/06/23		
	Sample Ce	ert:	Not Provided		
	Moisture C	ontent (%):	13		
	% Particles (By dry ma		11		
	MCV:		6.8		
	Interpretation	on of Plot:	Steepest Straight Line		
	Description	of Soil:	Grey brown sandy, slightly gravelly, SILT/0	CLAY	

Results relate only to the specimen tested, in as received condition unless othe	Persons authorised to approve reports J Barrett (Quality Manager)			
Opinions and interpretations are outside the scope of accreditation.				
* denotes Customer supplied information.	H Byrne (La	H Byrne (Laboratory Manager)		
This report shall not be reproduced except in full without written approval from t	he Laboratory.			
	Approved by	Date	Page	
IGSL Ltd Materials Laboratory	W.B.year	18/07/23	1 of 1	

IGSL Ltd Materials Laboratory Unit J5,M7 Business Park

Naas Co. Kildare

Test Report

Determination of Moisture Condition Value at Natural Moisture Content

Co. Kildare 045 899324		Tested in accordance	e with BS1377:Part 4:1990, clause 5.4	DETACES IN SCO
	Report No		R147902	
	Contract N	0.	24665/1	
	Contract N	ame:	Monaghan Town Active Travel Developme	nt Site
	Customer:		CORA	
	BH/TP*		TP12	
	Sample No	.*	AA205178	
	Depth* (m)		0.80	
	Sample Typ	pe:	В	
	Lab Sample	e No.	A23/1720	
	Source* (if	applicable)	N/A	
	Material Ty	pe* (if applicable):	В	
	Sample Re	ceived:	09/06/23	
	Date Teste	d:	09/06/23	
	Sample Ce	rt:	Not Provided	
	Moisture Co	ontent (%):	10	
	% Particles (By dry mas		21	
	MCV:		6.7	
	Interpretation	on of Plot:	Steepest Straight Line	
	Description	of Soil:	Brown slightly sandy, gravelly, SILT/CLAY	

Results relate only to the specimen tested, in as received condition unless other	Persons authorised to approve reports J Barrett (Quality Manager)			
Opinions and interpretations are outside the scope of accreditation.				
* denotes Customer supplied information.		H Byrne (La	boratory Manager)	
This report shall not be reproduced except in full without written approval from t	he Laboratory.			
	Approved by	Date	Page	
IGSL Ltd Materials Laboratory	H Em	18/07/23	1 of 1	

IGSL Ltd

Materials Laboratory Unit J5,M7 Business Park

Naas

Co. Kildare 045 899324

Test Report

Determination of Moisture Condition Value at Natural Moisture Content

Tested in accordance with BS1377:Part 4:1990, clause 5.4

Report No.

R147903

Contract No.

24665/1

Contract Name:

Monaghan Town Active Travel Development Site

Customer:

CORA

BH/TP*

TP14

Sample No.*

AA205176

Depth* (m)

1.50

Sample Type:

В

Lab Sample No.

A23/1721

Source* (if applicable)

N/A

Material Type* (if applicable):

В

Sample Received:

09/06/23

Date Tested:

09/06/23

Sample Cert:

Not Provided

Moisture Content (%):

14

% Particles > 20mm

15

(By dry mass):

MCV:

7.8

Interpretation of Plot:

Steepest Straight Line

Description of Soil:

Grey brown slightly sandy, gravelly, SILT/CLAY

Results relate only to the specimen tested, in as received condition unless otherwise noted. Opinions and interpretations are outside the scope of accreditation. Persons authorised to approve reports

denotes Customer complied information

J Barrett (Quality Manager)

denotes Customer supplied information.
 This report shall not be reproduced except in full without written approval from the Laboratory.

H Byrne (Laboratory Manager)

IGSL Ltd Materials Laboratory

Approved by Date Page
18/07/23 1 of 1

TEST REPORT Determination of California Bearing Ratio (CBR)

Tested in accordance with BS1377:Part 4:1990, clause 7

324				resteu	mae	ccorda	uce wit	<u>u 89 i</u>	3//:	ran 4	1:1990	J, clat	use /		
l	Report No.			147904	Į.		Cont	ract	M	lonagh	an Tow	n Activ	e Trave	l Deve	lopment S
(Contract No.			4665/1			Cust	omer					C	ora	
I	Date re	eceive	ed 0	9/06/2	3		Date	Teste	ed	15/0	6/23		Ų.	ora	
ı	BH/TP	No.*	TP	01			Sam	ple No).* /	AA20	0193	Туре	e:		В
ı	Depth*	' (m)	0.7	0			Lab	sample	e No.			A23/	1716		
	2 -														
	1.8 -				-					-		 			
	1.6 -														
	1.4 -									<u> </u>					
					-									<u> </u>	
ŝ	1.2 -														
Force (kN)	1 -							موييد				ļ			
For	0.8 -						-					ļ			
	0.6 -				_										
				.1											
	0.4 -														
	0.2 -	محو								-					
	0 -									ļ		ļ			
	C	0.9	5 1	1.5	2	2.5		3.5 4			5 5	5.5	6 6.	5 7	7.5
							Penet	ratior	ı (mr	n)					
h	<eу:< td=""><td></td><td></td><td colspan="6"> Top Base</td><td></td></eу:<>			Top Base											
Description:				y brow	n sa	ndy gra	avelly C	LAY				~~~			
Ī	nitial C	Conditi	ion:		Une	soaked	<u> </u>								
Moisture Content (%):			0,1,	14	Bulk Density (Mg/m³): 2.01										
	Surcharge (kg): % Material >20mm:				Dry Density (Mg/m³): 1.76										
	∕e Mate ∕lethoc				Sta	13 tic Cor	npactio	n Met	hod :	,					
							, , p 							 -	
	est Re	esult R %		Fop		Base	-								
 		n % sture	-	5.7	 	5.6 14	4								
1				14											

Results relate only to the specimen tested, in as received condition unless otherwise noted

Persons authorized to approve reports

Opinions and interpretations are outside the scope of accreditation.

J Barrett (Quality Manager)

denotes Customer supplied information

H Byrne (Laboratory Manager)

This report shall not be reproduced except in full without written approval from the Laboratory.

Approved by	Date	Page No.
1 Byron	18/07/23	1 of 1

045 899324

TEST REPORT Determination of California Bearing Ratio (CBR)

Tested in accordance with BS1377:Part 4:1990, clause 7

Report No. R147905 Contract Monaghan Town Active Travel Development Site Contract No. 24665/1 Customer Cora Date received 09/06/23 **Date Tested** 15/06/23 BH/TP No.* **TP03** Sample No.* AA200179 Type: В Depth* (m) 0.60 Lab sample No. A23/1717 1.2 1 8.0 Force (kN) 0.6 0.4 0.2 0 1.5 2 2.5 3 3.5 4 4.5 5.5 6 6.5 7.5 Penetration (mm) Key: Top ----- Base

Description: Grey brov	vn sandy gra	velly CLAY	
Initial Condition:	Unsoaked		
Moisture Content (%):	12	Bulk Density (Mg/m ³):	2.03
Surcharge (kg):	4	Dry Density (Mg/m ³):	1.82
% Material >20mm:	10		
Method of compaction:	Static Com	paction Method 2	

Test Result	Тор	Base
CBR %	4.5	4.8
Moisture Content %	12	11

Results relate only to the specimen tested, in as received condition unless otherwise noted

Opinions and interpretations are outside the scope of accreditation.

* denotes Customer supplied information

Persons authorized to approve reports

J Barrett (Quality Manager)

H Byrne (Laboratory Manager)

This report shall not be reproduced except in full without written approval from the Laboratory.

	Approved by	Date	Page No.
IGSL Ltd Materials Laboratory	the stripes and	18/07/23	1 of 1

IGSL Ltd Materials Laboratory

Unit J5,M7 Business Park Naas Co.Kildare

TEST REPORT Determination of California Bearing Ratio (CBR)

045 899324 Tested in accordance with BS1377:Part 4:1990, clause 7 Report No. R147906 Contract Monaghan Town Active Travel Development Site Contract No. 24665/1 Customer Cora Date received 09/06/23 **Date Tested** 15/06/23 BH/TP No.* **TP05** Sample No.* AA200182 Type: В Depth* (m) 0.70 Lab sample No. A23/1718 1.4 1.2 1 0.8 Force (kN) 0.6 0.4 0.2 1.5 2 2.5 3.5 3 4 4.5 5 5.5 6 6.5 7.5 Penetration (mm) Key: Top ----- Base Description: Brown slightly sandy, slightly gravelly, SILT/CLAY Initial Condition: Unsoaked Moisture Content (%): 13 Bulk Density (Mg/m³): 2.08 Surcharge (kg): Dry Density (Mg/m³): 1.83 % Material >20mm: 10 Method of compaction: Static Compaction Method 2

Test Result	Тор	Base
CBR %	3.7	4.5
Moisture Content %	14	13

Results relate only to the specimen tested, in as received condition unless otherwise noted

Opinions and interpretations are outside the scope of accreditation.

denotes Customer supplied information

This report shall not be reproduced except in full without written approval from the Laboratory.

Persons authorized to approve reports

J Barrett (Quality Manager)

H Byrne (Laboratory Manager)

IGSL Ltd Materials Laboratory

Approved by	Date	Page No.
A Francisco	18/07/23	1 of 1

045 899324

TEST REPORT Determination of California Bearing Ratio (CBR)

Tested in accordance with BS1377:Part 4:1990, clause 7

Report I	No.	R147907	•	Contract	Monaghan Tov	vn Active Travel	Development
Contrac	t No.	24665/1		Customer		Coi	·a
Date red	ceived	09/06/2	3	Date Tested	15/06/23	Col	a
BH/TP N	No.*	TP09		Sample No.*	AA200191	Туре:	В
Depth* ((m)	0.70		Lab sample N	lo.	A23/1719	
				,			
0.8 T							
ļ							
0.6							
L							
⊋							
- 0.4							
20							
*			100				
0.2			سننتلط				
-		/					
م ا	250						
0	0.5	1 1.5	2 2.5	3 3.5 4	4.5 5 5	5.5 6 6.5	7 7.5
				Penetration (n	nm)		
Key:			- Тор		Rase		
Descript	ion	Crow brown	-				
<u> </u>			n sandy, się	htly gravelly, S	IL1/GLAY		
Initial Co			Unsoaked		3		
Moisture Surcharg			14 4	Bulk Density (Dry Density (N		2.11	
% Mater			13	DI Y DELISITY (N	ngati):	1.85	
Method			Static Con	paction Method	d 2	··········	
Test Res	sult	Тор	Base	7			
CBR	***************************************	1.8	2.1	1			

Test Result	Тор	Base		
CBR %	1.8	2.1		
Moisture Content %	14	14		

Results relate only to the specimen tested, in as received condition unless otherwise noted

Opinions and interpretations are outside the scope of accreditation.

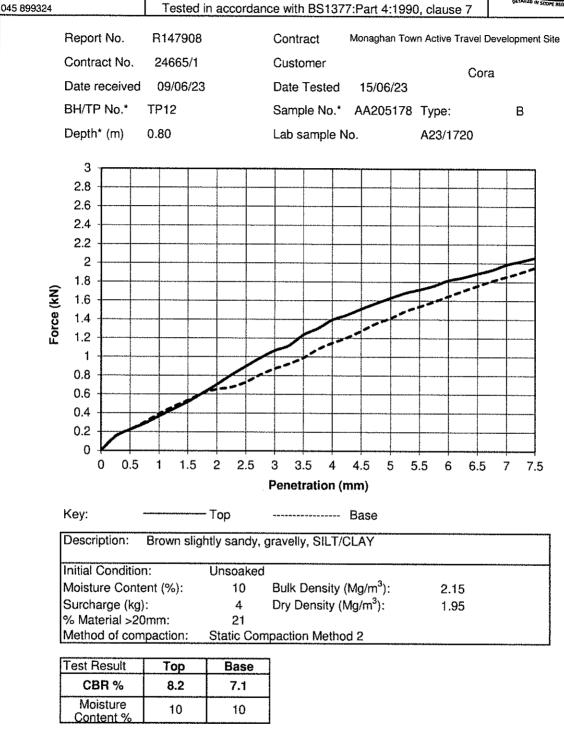
* denotes Customer supplied information

This report shall not be reproduced except in full without written approval from the Laboratory.

Persons authorized to approve reports

J Barrett (Quality Manager)

H Byrne (Laboratory Manager)


IGSL Ltd Materials Laboratory

Approved by	Date	Page No.
William	18/07/23	1 of 1

TEST REPORT Determination of California Bearing Ratio (CBR)

Tested in accordance with BS1377:Part 4:1990, clause 7

Results relate only to the specimen tested, in as received condition unless otherwise noted

Persons authorized to approve reports

Opinions and interpretations are outside the scope of accreditation.

J Barrett (Quality Manager)

denotes Customer supplied information

H Byrne (Laboratory Manager)

This report shall not be reproduced except in full without written approval from the Laboratory

Approved by Page No. Date M. Broggian 18/07/23 1 of 1

TEST REPORT Determination of California Bearing Ratio (CBR)

5 899324	Tested in accor	dance with BS137	77:Part 4:1990), clause 7	DETAILED IN SCOPE A
Report No.	R147909	Contract	Monaghan Tow	n Active Travel D	evelopment Site
Contract No.	24665/1	Customer	mer _		
Date received	09/06/23	Date Tested	15/06/23	Cora	1
BH/TP No.*	TP14	Sample No.*	AA205176	Type:	В
Depth* (m)	1.50	Lab sample i		A23/1721	-
1.2					
1					
0.8					
Force (kN)					
0.4					
0.2					
0					
0 0.5	1 1.5 2 2.	5 3 3.5 4 Penetration (.5 6 6.5	7 7.5
Key:	Тор		•		
Description:	Grey brown slightly	sandy, gravelly,	SILT/CLAY	***************************************	
Initial Conditio Moisture Cont		ked Bulk Density	/Ma/m³\-	2.04	
Surcharge (kg): 4	Dry Density (2.04 1.79	

Test Result	Тор	Base
CBR %	2.7	3.3
Moisture Content %	14	13

15

Static Compaction Method 2

Results relate only to the specimen tested, in as received condition unless otherwise noted

Opinions and interpretations are outside the scope of accreditation.

% Material >20mm:

Method of compaction:

denotes Customer supplied information

This report shall not be reproduced except in full without written approval from the Laboratory.

Persons authorized to approve reports

J Barrett (Quality Manager)

H Byrne (Laboratory Manager)

IGSL Ltd Materials Laboratory

Approved by	Date	Page No.
H Byrns	18/07/23	1 of 1

Test Report

Dry Density/Moisture Content Relationship

Tested in accordance with BS1377:Part 4:1990

Report No.

R147910

Contract No. 24665/1

Contract Name:

Monaghan Town Active Travel Development Site

Location*:

TPOI

Sample No*.

AA200193

Depth* (m)

1.79

0.7

Material Type

В

Lab sample no.

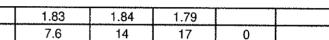
A23/1716

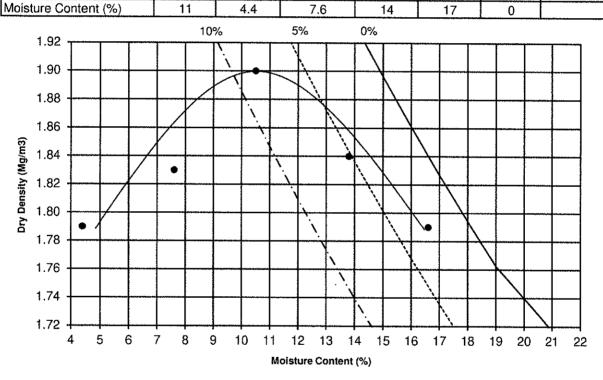
Customer: CORA

2.5 Kg Rammer

Date Received:

Dry Density (Mg/m³)


09/06/2023


1.90

Test Method:

3.3

Date Tested: 03/07/2023 BS1377:Part 4:1990

Maximum Dry Density (Mg/m3):

1.90

Optimum Moisture Content (%):

11

Description:

Brown sandy gravelly SILT/CLAY

Sample Preparation:

Material passing 20mm

Single / Separate samples used

Particle Density (Mg/m³):

2.65

Particle Density:

Assumed

% retained on 20/37.5mm sieve:

13

R147910 TP01 0mc

Results relate only to the specimen tested, in as received condition unless otherwise noted.

Persons authorised to approve reports

Opinions and interpretations are outside the scope of accreditation.

IGSL Materials Laboratory

J Barrett (Quality Manager)

denotes Customer supplied information

H Byrne (Laboratory Manager)

This report shall not be reproduced except in full without the written approval of the Laboratory.

Approved by Date Page 11 Verge 6 18/07/23 1 of 1 IGSL Ltd Materials Laboratory M7 Business Park Naas

Test Report

Dry Density/Moisture Content Relationship

Tested in accordance with BS1377:Part 4:1990

Report No.

Co. Kildare

R147911

Contract No. 24665/1

Contract Name:

Monaghan Town Active Travel Development Site

Location*:

TDAS

Sample No*.

AA200179

Depth* (m)

Material Type

В

Lab sample no.

Date Received:

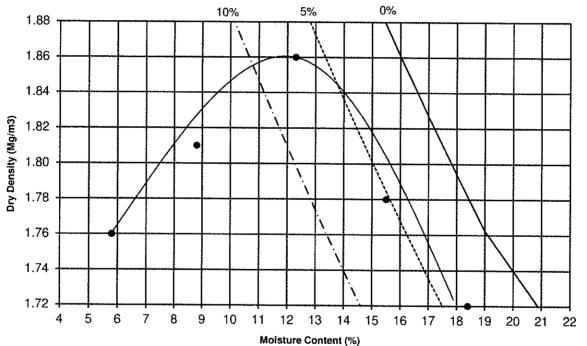
A23/1717 09/06/2023

Customer: CORA

Test Method:

0.7

2.5 Kg Rammer


Date Tested:

03/07/2023

BS1377:Part 4:1990

3.3

Dry Density (Mg/m³)	1.86	1.76	1.81	1.78	1.72		
Moisture Content (%)	12	5.8	8.8	16	18	0	

Maximum Dry Density (Mg/m3):

1.86

Optimum Moisture Content (%):

12

Description:

Brown sandy gravelly SILT/CLAY

Sample Preparation:

Material passing 20mm

Single / Separate samples used

Particle Density (Mg/m³):

2.65

Particle Density:

Assumed

% retained on 20/37.5mm sieve:

10

R147911 TP03 @ 0.6 0mc

Results relate only to the specimen tested, in as received condition unless otherwise noted. Opinions and interpretations are outside the scope of accreditation.

Persons authorised to approve reports

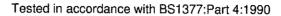
J Barrett (Quality Manager)

denotes Customer supplied information

H Byrne (Laboratory Manager)

This report shall not be reproduced except in full without the written approval of the Laboratory.

IGSL Materials Laboratory


Approved by	Date	Page
The same of the same	18/07/23	1 of 1

IGSL Ltd Materials Laboratory M7 Business Park

Naas Co. Kildare

Test Report

Dry Density/Moisture Content Relationship

Report No.

R147912

Contract No. 24665/1

Contract Name:

Monaghan Town Active Travel Development Site

Location*:

Sample No*.

AA200182

Depth* (m)

0.7

Test Method:

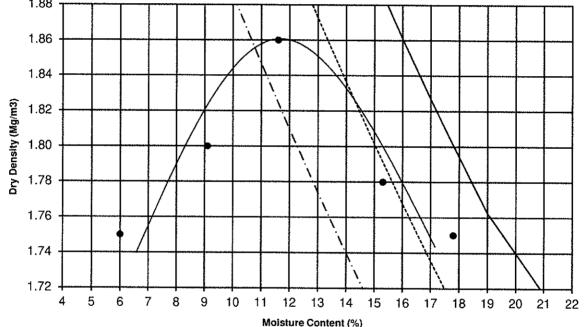
Material Type

В

Lab sample no. Date Received:

A23/1718 09/06/2023 Customer: CORA

2.5 Kg Rammer


Date Tested:

03/07/2023

BS1377:Part 4:1990

3.3

Dry Density (Mg/m²)	1.86	1.75	1.80	1.78	1.75		
Moisture Content (%)	12	6.0	9.1	15	18	0	
1.88		10%	5%	0%			
1.00		l i	\ \				1
1,86		لذلل					
.,,,,	1 1	1 1 1/2	-1-11	1 1 1		1 1	

Maximum Dry Density (Mg/m3):

1.86

Optimum Moisture Content (%):

12

Description:

Brown slightly sandy, slightly gravelly, SILT/CLAY

Sample Preparation:

Material passing 20mm

Single / Separate samples used

Particle Density (Mg/m³):

2.65

Particle Density:

Assumed

% retained on 20/37.5mm sieve:

10

Results relate only to the specimen tested, in as received condition unless otherwise noted.

Persons authorised to approve reports

Opinions and interpretations are outside the scope of accreditation.

IGSL Materials Laboratory

J Barrett (Quality Manager)

denotes Customer supplied information

H Byrne (Laboratory Manager)

This report shall not be reproduced except in full without the written approval of the Laboratory.

Approved by	Date	Page
the second of th	18/07/23	1 of 1

IGSL Ltd Materials Laboratory M7 Business Park

Naas Co. Kildare

Test Report

Dry Density/Moisture Content Relationship

Tested in accordance with BS1377:Part 4:1990

Report No.

R147913

Contract No. 24665/1

Contract Name:

Monaghan Town Active Travel Development Site

Location*:

Sample No*.

AA200191

Depth* (m)

0.7 Material Type В

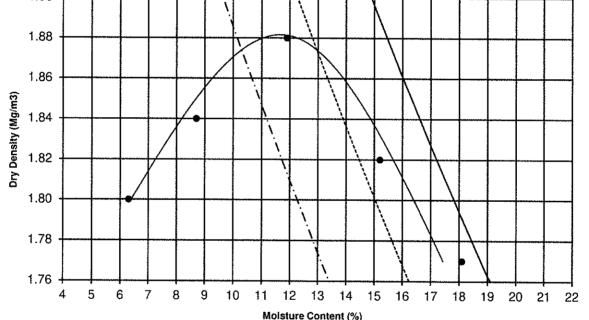
Lab sample no.

A23/1719

Customer: CORA

Test Method:

2.5 Kg Rammer


Date Received: Date Tested:

09/06/2023 03/07/2023

BS1377:Part 4:1990

3.3

Dry Density (Mg/m ³)	1.88	1.80	1.84	1.82	1.77		
Moisture Content (%)	12	6.3	8.7	15	18	0	
1.90		10%	5%	0%			
1.90		, i		$\Box \setminus \Box$			
1.88							

Maximum Dry Density (Mg/m³):

1.88

Optimum Moisture Content (%):

12

Description:

Grey brown sandy, slightly gravelly, SILT/CLAY

Sample Preparation:

Material passing 20mm

Single / Separate samples used

Particle Density (Mg/m3):

2.65

Particle Density:

Assumed

% retained on 20/37.5mm sieve:

13

Results relate only to the specimen tested, in as received condition unless otherwise noted.

Persons authorised to approve reports

Opinions and interpretations are outside the scope of accreditation.

J Barrett (Quality Manager)

denotes Customer supplied information

H Byrne (Laboratory Manager)

This report shall not be reproduced except in full without the written approval of the Laboratory.

Approved by Date Page Maria yan da 18/07/23 1 of 1

Test Report

Dry Density/Moisture Content Relationship

Tested in accordance with BS1377:Part 4:1990

Report No.

R147914

Contract No. 24665/1

Contract Name:

Monaghan Town Active Travel Development Site

Location*:

TO12

Sample No*.

AA205179

Depth* (m)

0.8 Material Type

В

Lab sample no.

A23/1720

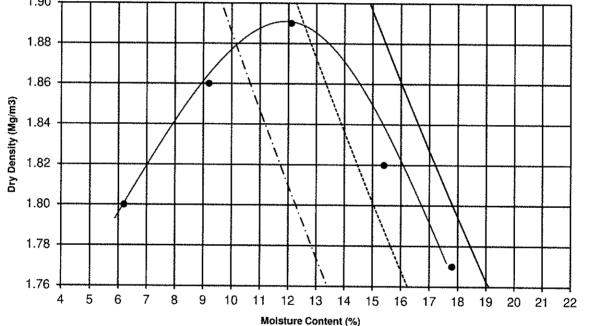
Customer: CORA

Date Received:

09/06/2023

Test Method:

2.5 Kg Rammer


Date Tested:

03/07/2023

BS1377:Part 4:1990

3.3

Dry Density (Mg/m°)	1.89	1.80	1.86	1.82	1.77		1
Moisture Content (%)	12	6.2	9.2	15	18	0	
1.90		10%	5%	0%			
1.00				\prod			
1.88							***
	1 1	ואו	1 M X	1 1 7 7			

Maximum Dry Density (Mg/m3):

1.89

Optimum Moisture Content (%):

12

Description:

Brown slightly sandy, gravelly, SILT/CLAY

Sample Preparation:

Material passing 20mm

Single / Separate samples used

Particle Density (Mg/m³):

2.65

Particle Density:

Assumed

% retained on 20/37.5mm sieve:

19

Results relate only to the specimen tested, in as received condition unless otherwise noted. Opinions and interpretations are outside the scope of accreditation.

Persons authorised to approve reports

J Barrett (Quality Manager)

denotes Customer supplied information

H Byrne (Laboratory Manager)

This report shall not be reproduced except in full without the written approval of the Laboratory.

m Byrne (Laboratory Manager)

ICCI Matariala I ali anata	Approved by		Page
IGSL Materials Laboratory	Altono o	18/07/23	1 of 1

IGSL Ltd Materials Laboratory M7 Business Park Naas

Co. Kildare

Test Report

Dry Density/Moisture Content Relationship

Tested in accordance with BS1377:Part 4:1990

Report No.

R147915

Contract No. 24665/1

Contract Name:

Monaghan Town Active Travel Development Site

Location*:

Sample No*.

AA205176

Depth* (m)

1.5 Material Type В

Lab sample no. Date Received:

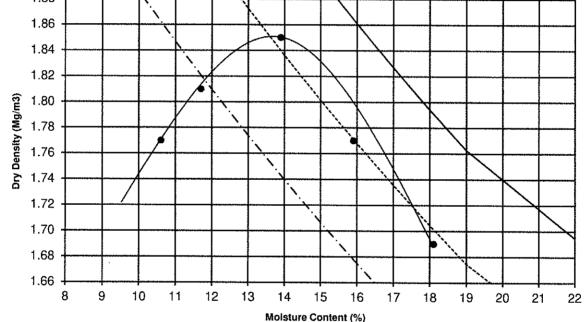
A23/1721

Customer: CORA

09/06/2023

Test Method:

2.5 Kg Rammer


Date Tested:

03/07/2023

BS1377:Part 4:1990

3.3

Dry Density (Mg/m	า")	1.77	1.69	1.85	1.81	1.77		
Moisture Content	(%)	11	18	14	12	16	0	***************************************
1.00	10	1%	5%	0%	•			
1.88 T		·. T	N N			T T		
1.86	 	` .	 	ļ	/			
1.84								
1 00				NN				

Maximum Dry Density (Mg/m³):

1.85

Optimum Moisture Content (%):

14

Description:

Grey brown slightly sandy, gravelly, SILT/CLAY

Sample Preparation:

Material passing 20mm

Single / Separate samples used

Particle Density (Mg/m³):

2.65

Particle Density:

Assumed

% retained on 20/37.5mm sieve:

14

Results relate only to the specimen tested, in as received condition unless otherwise noted.

Persons authorised to approve reports

Opinions and interpretations are outside the scope of accreditation. denotes Customer supplied information

J Barrett (Quality Manager)

This report shall not be reproduced except in full without the written approval of the Laboratory.

H Byrne (Laboratory Manager)

Approved by Date Page **IGSL Materials Laboratory** W. Yearn 18/07/23 1 of 1

🗱 eurofins

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Final Report

Report No.:

23-19446-1

Initial Date of Issue:

19-Jun-2023

Re-Issue Details:

Client

IGSL

Client Address:

M7 Business Park

Naas

County Kildare

ireland

Contact(s):

Darren Keogh

Project

24665 / 1 Monaghan Town Active

Travel Development Site(CORA)

Quotation No.:

Q20-19951

Date Received:

08-Jun-2023

Order No.:

Date Instructed:

08-Jun-2023

No. of Samples:

18

7

Turnaround (Wkdays):

Results Due:

16-Jun-2023

Date Approved:

19-Jun-2023

Approved By:

Details:

Stuart Henderson, Technical

Manager

Results - Leachate

Site(CORA)											
Client: IGSL			Che	mtest Jc	b No.:	Chemtest Job No.: 23-19446	23-19446	23-19446	23-19446	23-19446	23-19446
Quotation No.: Q20-19951		Ĭ	Shemte	Chemtest Sample ID.:	ole ID.:	1653387	1653389	1653392	1653395	1653398	1653402
Order No.:			Clie	Client Sample Ref.:	le Ref.:	AA192931	AA192934	AA171710	AA200184	AA200195	AA205173
			Se	Sample Location:	cation:	BH01	BH03	8H07	TP04	TP08	TP13
				Sample Type:	3 Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				Top Depth (m):	ith (m):	0.50	0.50	0.80	0.50	08.0	0.60
Determinand	Accred.		Type	SOP Type Units	GOT						
pH	n	1010	10:1		N/A	8.4	8.1	8.8	6.8	8.9	8.2
Ammonium	n	1220	10:1	l/6m	0.050	0.22	0.13	0.11	0.11	0.12	0.15
Ammonium	Z	1220	10:1	mg/kg	0.10	2.5	1,4	1.5	1.6	1.7	1.6
Boron (Dissolved)	n	1455	10:1	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzoliffuoranthene	z	1800	101	l/bn	ug/1 0.010	< 0.010	< 0.010	< 0.010	> 0 010	< 0.010	< 0.010

Results - Soil

Project: 24665 / 1 Monaghan Town Active Travel Development

ব	
띩	
낑	Į
핆	
뒮	
,	Н

Client: IGSI		HU.	Chemiest Joh No.	ION No.	22-104AR	22 404AR	DALOF CO	arror co	SERVE CO.	GEFOR GG	C	C. FOR 60	
Quotation No.: Q20-19951		Chem	Chemtest Sample ID.	nole ID.:	1653387	1653388	1853389	1653390	1653301	1853302	1653303	1653304	23-19446
Order No.:		ΰ	Client Sample Ref	ple Ref.	AA192931	AA197802	AA192934	AA192939	AA192947	AA171710	AA200193	AA200179	AA200184
		ľ	Sample Location	ocation:	BH01	BH02	BH03	BH04A	BH05	BH07	TP01	TPO3	TEOL
			Samp	Sample Type:		SOIL	SOIL	SOIL	NOS	SOIL	IIOS	200	100
			Top D	Top Depth (m):		1.00	0.50	100	1.00	0.80	0.70	080	0.50
			Asbes	Asbestos Lab:	DURHAM		DURHAM			NFW-ASB		22.5	NFW-ASB
Determinand	Accred.	SOP	200	COD									200
ACM Type	ח	2192		1	-					•			•
Asbestos Identification	ח	2192		N/A	No Asbestos		No Asbestos			No Asbestos			No Asbestos
Moisture	2	0000	//0	0000	Detected	C ^	Detected	ţ	**	Detected	ļ		Detected
Since of the second sec	2 2		·	0.020	62	0.7	77	=		9.0	O.	10	30
Boron (Hot Water Soluble)	2 =	2120	malka	0.40	141 < 0.40	(A) 8.0	101 < 0.40	(A) 8.5	A) 8.5	101 / 0 40			07 0 7 103
Magnesium (Mater Soluble)	Z	2120		0,00	25.0	10.040	2	0.00	141	04:0 / (L)			14) > 0.40
Subhate (2.1 Water Soluble) as SO4	z =	2120	Š 2	0.010		[A] < 0.010		[A] < 0.010	[A] < 0.010				
Total Sulphur		2175	b %	0.010		141 0 032		[A] 0.015	[A] 0.019				
Sulphur (Elemental)	ם	2180	ĮΕ	1.0	[A] 2.7		[A] 3.2		2000	[A] 2.3			[A] 2.2
Chloride (Water Soluble)	Þ	2220		0.010		[A] 0.11		[A] < 0.010	(A) < 0.010				
Nitrate (Water Soluble)	z	2220	70	0.010		< 0.010		< 0.010	< 0.010				
Cyanide (Total)	5	2300	mg/kg	0.50	[A] < 0.50		[A] < 0.50			[A] < 0.50			[A] < 0.50
Sulphide (Easily Liberatable)	z	2325	mg/kg	0.50	[A] 14		[A] 4.7			[A] 2.5			[A] 4.6
Ammonium (Water Soluble)	n	2220	1/6	0.01		< 0.01		< 0.01	< 0.01				
Sulphate (Acid Soluble)	n	2430	%	0.010	[A] 0.024	[A] 0.057	[A] 0.018	[A] 0.029	[A] 0.031	[A] 0.014			[A] 0.053
Arsenic	n	2455	mg/kg	0.5	3.3		3.6			3.3			5.1
Barium	⊃	2455	mg/kg	0	28		68			88			34
Cadmium	n	2455	mg/kg	0.10	< 0.10		< 0.10			< 0.10			< 0.10
Chromium	J	2455	mg/kg	0.5	15		16			15			18
Molybdenum	n	2455	mg/kg	0.5	< 0.5		< 0.5			< 0.5			< 0.5
Antimony	z	2455	mg/kg	2.0	< 2.0		< 2.0			< 2.0			< 2.0
Copper	ם	*********	mg/kg	0.50	10		13			11			13
Mercury	5		mg/kg	0.05	< 0.05		< 0.05			0.05			0.07
Nickel	⊃		mg/kg	0.50	23		31			21			28
Lead	ב		mg/kg	0.50	8.1		12			14			20
Selenium	כ		mg/kg	0.25	< 0.25		< 0.25			< 0.25			< 0.25
Zinc	∍		mg/kg	0.50	29		38			37			62
Chromium (Trivalent)	z		mg/kg	0.	15		16			15			18
Chromium (Hexavalent)	z	-	mg/kg	0.50	< 0.50		< 0.50			< 0.50			< 0.50
Organic Matter	⊃		%	0.40							[A] 2.5	[A] 1.8	
Mineral Oil (TPH Calculation)	Z		mg/kg	10	< 10		< 10			< 10			< 10
Aliphatic TPH > C5-C6	z	2680	mg/kg	1.0	[A] < 1.0		[A] < 1.0			[A] < 1.0			[A] < 1.0
Aliphatic TPH >C6-C8	z		mg/kg	1.0	[A] < 1.0		[A] < 1.0			[A] < 1.0			[A] < 1.0
Aliphatic TPH >C8-C10	z		mg/kg	0.	[A] < 1.0		[A] < 1.0			[A] < 1.0			[A] < 1.0
Aliphatic TPH >C10-C12	z	2680	mg/kg	0.	[A] < 1.0		[A] < 1.0			[A] < 1.0			[A] < 1.0
Alphatic 1PH >C12-C16	z	2680	mg/kg	0.	[A] < 1.0		(A) < 1.0			[A] < 1.0			[A] < 1.0
Auphatic (PH >C 16-CZ1	2	70807	mg/kg	0.1	[A] < 1.0		[A] < 1.0			[A] < 1.0			A < 1.0

Project: 24665 / 1 Monaghan Town Active Travel Development

3	
Ö	
te(
Ñ	ĺ

Client: IGSL		3	1emtes	Chemtest Job No.:	.: 23-19446	23-19446	23-19446	23-19446	23-19446	23-19446	23-1944F	22.10446	22.10/46
Quotation No.: Q20-19951		Chen	ntest Sa	Chemtest Sample ID.:		1653388	1653389	1653390	1653391	1653392	1653393	1653394	1653395
Order No.:	-	Ō	lient Sa	Client Sample Ref.:	AA192931	AA197802	AA192934	AA192939	AA192947	AA171710	AA200193	AA200179	AA200184
			Sample	Sample Location:	1: 8H01	BH02	BH03	BH04A	BH05	BH07	TP01	TP03	TPDA
			San	Sample Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOII	ilos
			Top	Top Depth (m):	0.50	1.00	0.50	1.00	1.00	0.80	0.70	0,60	0.50
			Asb	Asbestos Lab:	DURHAM		DURHAM			NEW-ASB			NFW-ASB
Determinand	Accred.	SOP		100 S									200
Aliphatic TPH >C21-C35	N	2680	mg/kg	1.0	[A] < 1.0		[A] < 1.0			[A] < 1.0			[A] < 1.0
Aliphatic TPH >C35-C44	z	2680	_	1.0	[A] < 1.0		[A] < 1.0			[A] < 1.0			[A] < 1.0
Total Aliphatic Hydrocarbons	z	2680	mg/kg	3 5.0	[A] < 5.0		[A] < 5.0			[A] < 5.0			[A] < 5.0
Aromatic TPH >C5-C7	z	2680	mg/kg		[A] < 1.0		[A] < 1.0			A] < 1.0			[A] < 1.0
Aromatic TPH >C7-C8	z	2680		L	[A] < 1.0		[A] < 1.0			[A] < 1.0			141<10
Aromatic TPH >C8-C10	z	2680			[A] < 1.0		[A] < 1.0			A < 1.0			[A] < 1.0
Aromatic TPH >C10-C12	z	2680	mg/kg	1.0	[A] < 1.0		[A] < 1.0			[A] < 1.0			[A] < 1.0
Aromatic TPH >C12-C16	z	2680	mg/kg	1.0	[A] < 1.0		A < 1.0			[A] < 1.0			[A] < 1.0
Aromatic TPH >C16-C21	z	2680	mg/kg	1.0	[A] < 1.0		[A] < 1.0			IA] < 1.0			[A] < 1.0
Aromatic TPH >C21-C35	Z	2680		1.0	[A] < 1.0		[A] < 1.0			[A] < 1.0			[A] < 1.0
Aromatic TPH >C35-C44	z	2680	mg/kg	1.0	[A] < 1.0		[A] < 1.0			[A] < 1.0			[A] < 1.0
Total Aromatic Hydrocarbons	N	2680		5.0	[A] < 5.0		[A] < 5.0			[A] < 5.0			[A] < 5.0
Total Petroleum Hydrocarbons	z	2680	mg/kg	10.0	[A] < 10		[A] < 10			[A] < 10			[A] < 10
Велгепе	Λ	2760	µg/kg	1.0	[A] < 1.0		[A] < 1.0			[A] < 1.0			[A] < 1.0
Toluene	n	2760	µg/kg	1.0	[A] < 1.0		(A) < 1.0			A] < 1.0			[A] < 1.0
Ethylbenzene	n	2760	µg/kg	1.0	[A] < 1.0		[A] < 1.0			[A] < 1.0			[A] < 1.0
m & p-Xylene	n	2760	µg/kg	1.0	[A] < 1.0		[A] < 1.0			[A] < 1.0			[A] < 1.0
o-Xylene	ב	2760	µg/kg	1.0	[A] < 1.0		[A] < 1.0			[A] < 1.0			[A] < 1.0
Methyl Tert-Butyl Ether	⊃	2760			_		[A] < 1.0			[A] < 1.0			[A] < 1.0
Naphthalene	z	2800	mg/kg		\Box		[A] < 0.010			[A] < 0.010			[A] < 0.010
Acenaphthylene	z	2800	mg/kg				[A] < 0.010			[A] < 0.010			[A] < 0.010
Acenaphthene	z	2800	mg/kg				[A] < 0.010			[A] < 0.010			[A] < 0.010
Fluorene	z	2800	mg/kg	_	[A] < 0.010		[A] < 0.010			[A] < 0.010			[A] < 0.010
Phenanthrene	z	2800	mg/kg	0.010	[A] < 0.010		[A] < 0.010			[A] < 0.010			[A] < 0.010
Anthracene	z	2800	mg/kg		₹.		[A] < 0.010			[A] < 0.010			[A] < 0.010
Fluoranthene	z	2800	mg/kg		_		[A] < 0.010			[A] < 0.010			[A] < 0.010
Pyrene	z	2800	mg/kg	_	[A] 0.18		[A] < 0.010			[A] < 0.010			[A] < 0.010
Benzo[a]anthracene	z	2800	mg/kg	-	_		[A] < 0.010			[A] < 0.010			[A] < 0.010
Chrysene	z	2800	mg/kg	-			[A] < 0.010			[A] < 0.010			[A] < 0.010
Benzo[b]fluoranthene	z	2800	mg/kg		_		[A] < 0.010			[A] < 0.010			[A] < 0.010
Benzo(k)fluoranthene	z	2800			\neg		[A] < 0.010			[A] < 0.010			[A] < 0.010
Benzo(a)pyrene	z	2800	mg/kg				[A] < 0.010			[A] < 0.010			[A] < 0.010
Indeno(1,2,3-c,d)Pyrene	z	2800	mg/kg	_	_		[A] < 0.010			[A] < 0.010			[A] < 0.010
Dibenz(a,h)Anthracene	z	2800	mg/kg	0.010			[A] < 0.010			[A] < 0.010			[A] < 0.010
Benzo[g,h,i]perylene	Z	2800			[A] < 0.010		[A] < 0.010			[A] < 0.010			[A] < 0.010
Coronene	z	2800	mg/kg	1	[A] < 0.010		[A] < 0.010			[A] < 0.010			[A] < 0.010
Total Of 17 PAH's	z	2800	mg/kg				[A] < 0.20			[A] < 0.20			[A] < 0.20
PCB 28	2	2815	mg/kg	0.0010	[A] < 0.0010		[A] < 0.0010			[A] < 0.0010			[A] < 0.0010

Project: 24665 / 1 Monaghan Town Active Travel Development

Site(CORA)		н
te(COR	_	1
te(COR		н
te(COR	~1	8
Site(COF	N	п
Site(CO	Mw	3
Site(CC	~1	з
Site(C	L31	и
Site(C	751	я
Site((11	×
Site		я
Site	~~	u
訓	711	1
ᇷ	ائد	1
σI	=1	3
Wil		я
	m	ı
	,	н

Client: IGSL		Chemi	Chemtest Job No.:	23-19446	23-19446	23-19446	23-19446	23-19446	23-19446	23-19446	23-19446	23_1944R
Quotation No.: Q20-19951		Chemtest	Chemtest Sample ID.:	1653387	1653388	1653389	1653390	1653391	1653392	1653393		1653395
Order No.:		Client	Client Sample Ref :	. AA192931	AA197802	AA192934	AA192939	AA192947	AA171710	AA200193	AA200179	AA200184
		Sam	Sample Location:	BH01	BH02	BH03	BH04A	BH05	BH07	TP01	TP03	TP04
		נט	Sample Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
		7	Top Depth (m):	0.50	1.00	0.50	1.00	1.00	0.80	0.70	09.0	0.50
		∢	Asbestos Lab:	DURHAM		DURHAM			NEW-ASB			NEW-ASB
Determinand	Accred.	SOP	Accred. SOP Units LOD	(0)								
PCB 52	z	2815 mc	2815 mg/kg 0.0010	[A] < 0.0010		[A] < 0.0010			[A] < 0.0010			A] < 0.0010
PCB 90+101	z	2815 mg	mg/kg 0.0010	[A] < 0.0010		[A] < 0.0010			[A] < 0.0010			[A] < 0.0010
PCB 118	2	2815 mg	2815 mg/kg 0.0010	[A] < 0.0010		[A] < 0.0010			[A] < 0.0010			A < 0.0010
PCB 153	z	2815 mg	2815 mg/kg 0.0010	[A] < 0.0010		[A] < 0.0010			[A] < 0.0010			[A] < 0.0010
PCB 138	z	2815 mg	2815 mg/kg 0.0010	[A] < 0.0010		[A] < 0.0010		,	[A] < 0.0010			[A] < 0.0010
PCB 180	z	2815 mg	mg/kg 0.0010	[A] < 0.0010		[A] < 0.0010			[A] < 0.0010			[A] < 0.0010
Total PCBs (7 congeners)	z	2815 mg	2815 mg/kg 0.0010	[A] < 0.0010		[A] < 0.0010			[A] < 0.0010			[A] < 0.0010
Total Phenols	⊃	2920 ma/ka	1/kg 0.10	< 0.10		< 0.10			< 0.10			70.10

Project: 24665 / 1 Monaghan Town Active Travel Development Site(CORA)

Client: IGSL	10081/080/080100	45	Chemtest Joh	Job No:	23-10446	23_104AR	22.4044R	- 22.104AR	27.101.60	SAKOF CO.	OFFICE CO.	0.100.00	C
Quotation No.: Q20-19951		Chem	Chemtest Sampl	mple ID.:	91	1653397	1653398	1653399	1653400	1653401	1653402	1653403	1653404
Order No.:		Ö	Client Sample	Slient Sample Ref.:	14	AA200188	AA200195	AA200196	AA200191	AA205178	AA205173	AA205175	AA205176
			Sample	Location:	TP05	TP07	TP08	TP08	TP09	TP12	TP13	TP 14	TP14
			Sample	ple Type:	l	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Top Dept	Top Depth (m):	0.70	0.50	08'0	1.80	0.70	0.80	09'0	0.70	1.50
			Asbe	stos Lab.			COVENTRY				NEW-ASB		
Determinand	Accred.	SOP	CGSS	T0D									
ACM Type	n	2192		N/A			ť						
Asbestos Identification	⊃	2192		A/N			No Asbestos Detected				No Asbestos Detected		
Moisture	z	2030	%	0.020	13	12	10	7.8	*1	11	19	177	13
pH (2.5:1)	z	2010		4.0		[A] 8.0		[A] 8.6				[A] 7.8	
Boron (Hot Water Soluble))	2120	mg/kg	┿			[A] < 0,40				[A] 0.52	2: 6: 1	
Magnesium (Water Soluble)	z	2120	l/6	0.010		[A] < 0.010		[A] < 0.010			, ,	[A] < 0.010	
Sulphate (2:1 Water Soluble) as SO4	n	2120	L	0.010		[A] < 0.010		[A] < 0.010				IA10.24	
Total Sulphur	Ω	2175		0.010		[A] 0.034		[A] 0.027				IA10.077	
Sulphur (Elemental)	n	2180	mg/kg	-			[A] 2.6				[A] 3.8		
Chloride (Water Soluble)	n	2220		_		[A] 0.028		[A] < 0.010				[A] < 0.010	
Nitrate (Water Soluble)	N	2220	L	0.010		0.017		< 0.010				< 0.010	
Cyanide (Total)	n	2300	mg/kg	0			[A] < 0.50				[A] < 0.50		
Sulphide (Easily Liberatable)	2	2325	mg/kg	0.50			[A] 3.3				[A] 3.3		
Ammonium (Water Soluble)	n	2220	_	_		< 0.01		< 0.01				< 0.01	
Sulphate (Acid Soluble)	Ŋ	2430		0.010		[A] 0.065	[A] 0.033	[A] 0.045			[A] 0.040	[A] 0.075	
Arsenic	n	2455	mg/kg	0.5			4.5				5.3		
Barium	Ð	2455	mg/kg				48				43		
Cadmium	n	2455	mg/kg				< 0.10				< 0.10		
Chromium	ר	2455	mg/kg				27				28		
Molybdenum	n	2455		0.5			< 0.5				< 0.5		
Antimony	z	2455		ᆫ			< 2.0				< 2.0		
Copper	n	2455	mg/kg	<u> </u>			21				18		
Mercury	Û	2455	mg/kg				< 0.05				< 0.05		
Nickel	Ω	2455	mg/kg				43				37		
Lead	n	2455	mg/kg				16				13		
Selenium	n	2455	mg/kg	$\overline{}$			< 0.25				< 0.25		
Zinc	n	2455	mg/kg				48				41		
Chromium (Trivalent)	z	2490	mg/kg				27				28		
Chromium (Hexavalent)	z	2490	mg/kg				< 0.50				< 0.50		
Organic Matter	Ð	2625	%	0.40	[A] 1.1				[A] 1.1	[A] 1.0			[A] 1.1
Mineral Oil (TPH Calculation)	z	2670	mg/kg				< 10				< 10		
Aliphatic TPH >C5-C6	z	2680	mg/kg	1.0			[A] < 1.0				[A] < 1.0		
Aliphatic TPH >C6-C8	z	2680	mg/kg	1.0			[A] < 1.0				[A] < 1.0		
Aliphatic TPH >C8-C10	z	2680	mg/kg	1.0			[A] < 1.0				[A] < 1.0		
Aliphatic TPH >C10-C12	Z	2680	mg/kg				[A] < 1.0				[A] < 1.0		
Aliphatic TPH >C12-C16	z	2680	mg/kg				(A) < 1.0				[A] < 1.0		
Aliphatic TPH >C16-C21	2	2680	mg/kg	0.1			[A] < 1.0				[A] < 1.0		

Project: 24665 / 1 Monaghan Town Active Travel Development_ Site(CORA)

Client: IGSL		Ö	Chemtest Job	t Job No.:	23-19446	23-1944R	23-19446	23-1044R	23.1044E	23.10JAE	23.40446	22 404AR	29 40446
Quotation No.: Q20-19951		Chen	Chemtest Sampl	ample ID.:	17	1653397	1653398	1653399	1653400	1653401	1653402	1653403	1653404
Order No.:		Ö	lient Sa	Client Sample Ref .:	AA200182	AA200188	AA200195	AA200196	AA200191	AA205178	AA205173	AA205175	AA205176
			Sample	Sample Location:	TP05	TP07	TP08	TP08	TP09	TP12	TP13	TP14	TP14
			San	Sample Type:		SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Top	Top Depth (m):	0.70	0.50	08'0	1.80	0.70	0.80	09:0	0.70	1.50
			Asb	estos Lab:			COVENTRY				NEW-ASB		
Determinand	Accred.	SOP	3500	Units LOD									
Aliphatic TPH >C21-C35	z	2680	mg/kg	Ш			[A] < 1.0				[A] < 1.0		
Aliphatic TPH >C35-C44	z	2680	mg/kg	3 1.0			[A] < 1.0				[A] < 1.0		
Total Aliphatic Hydrocarbons	z	2680	mg/kg	L			[A] < 5.0				[A] < 5.0		
Aromatic TPH >C5-C7	Z	2680	mg/kg	1.0			[A] < 1.0				[A] < 1.0		
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0			[A] < 1.0				[A] < 1.0		
Aromatic TPH >C8-C10	z	2680	mg/kg	1.0			[A] < 1.0				[A] < 1.0		
Aromatic TPH >C10-C12	Z	2680	mg/kg	1.0			[A] < 1.0				[A] < 1.0		
Aromatic TPH >C12-C16	Z	2680	mg/kg				[A] < 1.0				[A] < 1.0		
Aromatic TPH >C16-C21	z	2680					[A] < 1.0				[A] < 1.0		
Aromatic TPH >C21-C35	z	2680		1.0			[A] < 1.0				[A] < 1.0		
Aromatic TPH >C35-C44	z	2680		L			[A] < 1.0				[A] < 1.0		
Total Aromatic Hydrocarbons	z	2680		L			[A] < 5.0				[A] < 5.0		
Total Petroleum Hydrocarbons	z	2680		Ľ			[A] < 10				[A] < 10		
Benzene	5	2760	µg/kg	_			[A] < 1.0				[A] < 1.0		
Toluene	Ð	2760					[A] < 1.0				[A] < 1.0		
Ethylbenzene	ם	2760		_			[A] < 1.0				[A] < 1.0		
m & p-Xylene	Þ	2760	µg/kg	1.0			[A] < 1.0				[A] < 1.0		
o-Xylene	n	2760	l µg/kg	1.0			[A] < 1.0				[A] < 1.0		
Methyl Tert-Butyl Ether	n	2760		_			[A] < 1.0				[A] < 1.0		
Naphthalene	z	2800					[A] < 0.010				[A] < 0.010		
Acenaphthylene	z	2800		0			[A] < 0.010				[A] < 0.010		
Acenaphthene	z	2800	mg/kg	_			[A] < 0.010				[A] < 0.010		
Fluorene	Z	2800	mg/kg	\vdash			[A] < 0.010				[A] < 0.010		
Phenanthrene	z	2800	mg/kg	-			[A] < 0.010				[A] < 0.010		
Anthracene	z	2800	mg/kg	0.010			[A] < 0.010				[A] < 0.010		
Fluoranthene	z	2800	mg/kg				[A] < 0.010				[A] < 0.010		
Pyrene	Z	2800	mg/kg	9			[A] < 0.010				[A] < 0.010		
Benzo[a]anthracene	z	2800	mg/kg				[A] < 0.010				[A] < 0.010		
Chrysene	z	2800					[A] < 0.010				[A] < 0.010		
Benzo[b]ffuoranthene	z	2800	mg/kg				[A] < 0.010				[A] < 0.010		
Benzo[k]fluoranthene	Z	2800	mg/kg	٥			[A] < 0.010				[A] < 0.010		
Benzo[a]pyrene	Z	2800	mg/kg	0.010			[A] < 0.010				[A] < 0.010		
Indeno(1,2,3-c,d)Pyrene	Z	2800	mg/kg	0			[A] < 0.010				[A] < 0.010		
Dibenz(a,h)Anthracene	Z	2800	mg/kg	0.010			[A] < 0.010				[A] < 0.010		
Benzo[g,h,i]perytene	z	2800	mg/kg	Ö			[A] < 0.010				[A] < 0.010		
Coronene	z	2800	mg/kg				[A] < 0.010				[A] < 0.010		
Total Of 17 PAH's	z	2800		_			[A] < 0.20				[A] < 0.20		
PCB 28	z	2815	mg/kg	0.0010		******	[A] < 0.0010				[A] < 0.0010		
				•				THE STREET STREET					Ĺ

Project: 24665 / 1 Monaghan Town Active Travel Development Site(CORA)

	THE REAL PROPERTY AND ADDRESS OF THE PERSON NAMED IN												
Client: IGSL		Chen	Chemtest Job	No.:	No.: 23-19446	23-19446	23-19446	23-19446	23-19446	23-19446 23-19446	23-19446	23-19446 23-19446	23-19446
Quotation No.: Q20-19951		Chemtes	Chemtest Sample ID.:		1653396	1653397	1653398	1653399	1653400	1653401	1653402	1653403	1653404
Order No.:		Clien	Client Sample F	Ref.: A	AA200182	AA200188	AA200195	AA200196	AA200191	AA205178	AA205173	AA205175	AA205176
		Sai	Sample Location:	tion:	TP05	TP07	TP08	TP08	TP09	TP12	TP13	TP14	TP14
			Sample To	Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			rop Depth	յ (m)։	0.70	0.50	08'0	1.80	0.70	08.0	09:0	0.70	1.50
			Asbestos 1	Lab:			COVENTRY				NEW-ASB		
Determinand	Accred. SOP Units 1	SOP	Inits LC			S 150 W 150 W							
PCB 52	z	2815 m	mg/kg 0.0(0010			[A] < 0.0010				[A] < 0.0010		
PCB 90+101	z	2815 п	2815 mg/kg 0.00	00010			[A] < 0.0010				[A] < 0.0010		-
PCB 118	z	2815 m	2815 mg/kg 0.00	0100			[A] < 0.0010				[A] < 0.0010		
PCB 153	Z	2815 m	mg/kg 0.00	0010			[A] < 0.0010				[A] < 0.0010		
PCB 138	N	2815 m	mg/kg 0.00	0100			[A] < 0.0010				[A] < 0.0010		
PCB 180	z	2815 п	2815 mg/kg 0.0010	010			[A] < 0.0010				[A] < 0.0010		
Total PCBs (7 congeners)	z	2815 m	mg/kg 0.0010	010	·		[A] < 0.0010				[A] < 0.0010		
Total Phenois	n	2920 mg/kg		0.10			< 0.10				< 0.10		

Project: 24665 / 1 Monaghan Town Active Travel Development Site(CORA)

Limits Stable, Non-reactive Pazardous Pazardous	Chemtest Job No:	23-19446				Landfill	Landfill Waste Acceptance Criteria	e Criteria
National Carbon C	Chemtest Sample ID:	1653387					Limits	
Designation	Sample Ref:	AA192931					Stable, Non-	
Location: BH01 Decetion: Depth Decetion: Decetion: Decetion: Decetion: Depth Depth Decetion: D	Sample ID:						reactive	
Particle Depth(mi); Depth	Sample Location:	BH01			-		hazardous	Hazardous
Oppeth(m): SOP Accred. Units Landfill hazardous Both Carbon SOP Accred. Units Image of the control of the con	Top Depth(m):	0.50				Inert Waste	waste in non-	Waste
g Date: Accred. Units (A) 2.4 3 Canadial nand carbon 2825 U % [A) 2.4 3 5 guilliome Carbon 2810 U % 5.0 - - EX 2810 U mg/kg [A] < 0.010 6 - - EX 2810 U mg/kg [A] < 0.010 6 - - EX 2870 U mg/kg [A] < 0.010 6 - - 17 PAHS 2870 U mg/kg [A] < 0.010 - - - 17 PAHS 2015 U mg/kg [A] < 0.010 -	Bottom Depth(m):					Landfill	hazardous	Landfill
nand SOP Acred Units M [A] 24 3 5 ganic Carbon 2625 U % [A] 24 3 5 ganic Carbon 2625 U % [A] 24 3 5 EX 2760 U mg/kg [A] 2010 6 — EX (2 congeners) 2815 U mg/kg [A] 240 1 — EX (2 congeners) 2815 U mg/kg [A] 240 1 — — EX (2 congeners) 2810 U mg/kg [A] 240 1 —	Sampling Date:						Landfill	
Parisic Carbon 2625 U P P P S D	Determinand	SOP	Accred.	Units				
Section Care Care	Total Organic Carbon	2625	n	%	[A] 2.4	3	5	9
EX 2760 U mg/kg [A] < 0.0010 6 — BS (7 congeners) 2815 N mg/kg [A] < 0.0010	Loss On Ignition	2610	n	%	5.0			10
Big (7 congeners) 2815 N mg/kg [A] < 0.0010 1 INVAC 2870 U mg/kg [A] < 10 INVAC 2800 N mg/kg [A] < 10 INVAC 2800 N mg/kg [A] < 100 INVAC 2800 N mg/kg [A] < 100 INVAC 2010 U mg/kg [A] < 100 Intelesation Capacity 2015 N mol/kg 0.0060 Intelesation Capacity 2015 N mol/kg 0.0060 0.0060 0.0060 0.0060 Intelesation Capacity 2015 N 0.0060 0.006	Total BTEX	2760	n	mg/kg	[A] < 0.010	9	-	-
MAC 2670 U mg/kg [A] 0.500 U mg/kg [A] 0.55 1.00 U U T/8 T/8 U Sevalurate Sevalurate T/8 T/8 T/8 T/8 Sevalurate T/8	Total PCBs (7 congeners)	2815	Z	mg/kg	[A] < 0.0010	-	-	
Parks 2800	TPH Total WAC	2670	n	mg/kg	01 > [A]	200	-	
10 10 10 10 10 10 10 10	Total Of 17 PAH's	2800	Z	mg/kg	[A] 0.35	100	-	1
Intalisation Capacity 2015 N mol/kg 0.0060 — To evaluate nalysis Intalisation Capacity 2015 N 10:1 Eluate Limit values for compliance lear nalysis Interpretation Interpretation Interpretation Interpretation Interpretation 1455 U < 0.0005	Hd	2010	'n		7.8		9<	
nalysis 10:1 Eluate 10:1 Eluate Limit values for compliance lear mg/l mg/l mg/kg using BS EN 12457 at L/S 1 1455 U 0,0002 0,0523 0.5 2 n 1455 U < 0,0001	Acid Neutralisation Capacity	2015	Z	тоl/kg	0800'0	1	To evaluate	To evaluate
mg/l mg/l mg/kg using BS EN 12457 at L/S 10 to 1455 U 0,0002 0,0023 0,5 Z I	Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance is	eaching test
1455 U 0,0002 0,005 0,5 2 1455 U < 0,005				тд/I	mg/kg	a Sing B	S EN 12457 at L/S	i 10 l/kg
1455 U < 0.005 0.050 20 100 In 1455 U < 0.0001	Arsenic	1455	n	0.0002	0.0023	0.5	2	25
Interview of the control of	Ваѓит	1455	ח	< 0.005	< 0.050	20	100	300
n 1455 U < 0,0005 < 0,0050 0.5 10	Cadmium	1455	n	< 0.00011	< 0.0011	0.04	*	c,
um 0.0011 0.011 2 50 um 455 U <0.0005	Chromium	1455	n	< 0.0005	< 0.0050	0.5	10	70
um 455 U <0.0006 <0.0056 0.01 0.00 <th< td=""><td>Copper</td><td>1455</td><td>n</td><td>0.0011</td><td>0.011</td><td>2</td><td>20</td><td>100</td></th<>	Copper	1455	n	0.0011	0.011	2	20	100
Jum 1455 U 0.0006 0.0058 0.5 10 1455 U 0.0007 0.0666 0.4 10 10 1455 U <0.0005	Mercury	1455	n	< 0.00005	< 0.00050	0.01	0.2	2
1455 U 0.0007 0.0666 0.4 10 1455 U <0.0050	Molybdenum	1455	n	0.0006	0.0058	0.5	10	30
(1455) U < 0.0005 < 0.0050 0.5 10 (1455) U < 0.0050	Nicke!	1455	∩	0.0007	0.0066	0.4	10	40
() 1455 U < 0.0050 0.06 0.7 () 1455 U < 0.005	Lead	1455	-	< 0.0005	< 0.0050	0.5	10	50
In the control of the contro	Antimony	1455	⊃	< 0.0005	< 0.0050	90.0	0.7	5
1455 U 0.005 0.046 4 50 FO FO FO FO FO FO FO F	Selenium	1455	D	< 0.0005	< 0.0050	0.1	0.5	7
1220 U <1.0 800 1500 1500	Zinc	1455	n	0.005	0.046	4	50	200
1220 U 0.15 1.5	Chloride	1220	¬	< 1.0	< 10	800	15000	25000
1220 U < 10 100 20000 Solved Solids 1020 N 45 450 6000 - dex 1920 U < 0.30	Fluoride	1220		0.15	1.5	10	150	500
1020 N 45 450 4060 60000 1020 U <0.030 1 1610 U 4.8 <50 500 800	Sulphate	1220	Ω	< 1,0	< 10	1000	20000	20000
1920 U < 0.30 1 - 1610 U 4.8 < 50 500 800	Total Dissolved Solids	1020	Z	45	450	4000	00009	100000
1610 U 4.8 <50 500 800	Phenol Index	1920	Ð	< 0.030	< 0.30	1	1	,
	Dissolved Organic Carbon	1610)	4.8	< 50	200	800	1000

Solid Information	
Dry mass of test portion/kg	060'0
Moisture (%)	25

Waste Acceptance Criteria

Project: 24665 / 1 Monaghan Town Active Travel Development Site(CORA)

Chemtest Job No:	23-19446				(interesting i	Spring March Assessment of the Street	A Parison-12
Chemtest Sample ID:	1653389					Limits	4 2010
Sample Ref:	AA192934					Stable Non-	
Sample ID:						reactive	
Sample Location:	BH03					hazardous	Hazardous
Top Depth(m):	0.50				inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	n	%	[A] 2.0	3	2	9
Loss On Ignition	2610	n	%	1.5			10
Total BTEX	2760	ñ	mg/kg	[A] < 0.010	9	-	
Total PCBs (7 congeners)	2815	Z	mg/kg	[A] < 0.0010			
TPH Total WAC	2670	⊃	mg/kg	[A] < 10	200		1
Total Of 17 PAH's	2800	Z	mg/kg	[A] < 0.20	100	-	
Hd	2010	ח		8.0	7.0	9<	1
Acid Neutralisation Capacity	2015	z	mol/kg	0.012	3	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	Limit values for compliance leaching test	eaching test
			mg/i	mg/kg	using B.	using BS EN 12457 at L/S 10 l/kg	i 10 l/kg
Arsenic	1455	Þ	0.0003	0.0031	0.5	2	25
Barium	1455	-	< 0.005	< 0.050	20	100	300
Cadmium	1455	n	< 0.00011	< 0.0011	0.04	-	5
Chromium	1455	n	< 0.0005	< 0.0050	9.0	10	70
Copper	1455	n	0.0011	0,011	2	50	100
Mercury	1455	7	< 0.00005	< 0.00050	0.01	0.2	2
Mołybdenum	1455	Ð	0.0008	0.0079	0.5	10	30
Nickel	1455	n	0.0005	0.0050	0.4	10	40
Lead	1455	D	< 0.0005	< 0.0050	0.5	10	20
Antimony	1455	⊃	< 0.0005	< 0.0050	90.0	0.7	5
Seleníum	1455	D	< 0.0005	< 0.0050	0.1	0.5	7
Zinc	1455	n	0.003	0.033	4	20	200
Chloride	1220	n	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.10	1.0	10	150	500
Sulphate	1220	⊃	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	Z	47	470	4000	00009	100000
Phenol Index	1920	٦	< 0.030	< 0.30	-	-	•
Dissolved Organic Carbon	1610	U	4.1	< 50	200	800	1000

CORD RECORD	
Dry mass of test portion/kg	060'0
(Moisture (%)	22

Waste Acceptance Criteria

Project; 24665 / 1 Monaghan Town Active Travel Development Site(CORA)

Chemtest Sample ID: Sample Ref: Sample ID: Sample Location:	C++0:-0.4				Landfill	Landfill Waste Acceptance Criteria	Criteria
Sample Ref: Sample ID: Sample Location: Ton Dooth(m):	1653392					Limits	
Sample ID: Sample Location:	AA171710					Stable, Non-	
Sample Location:						reactive	
Ton Danshim).	BH07					hazardous	Hazardous
Lob Deputation.	0.80				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:				*****		Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	Ω	%	[A] 1.3	ဇ	5	9
Loss On Ignition	2610	n	%	10	1	l	10
Total BTEX	2760	n	mg/kg	[A] < 0.010	9	1	
Total PCBs (7 congeners)	2815	Z	mg/kg	[A] < 0.0010	-	-	ſ
TPH Total WAC	2670	ח	mg/kg	[A] < 10	500		1
Total Of 17 PAH's	2800	z	mg/kg	[A] < 0.20	100		1
Hd	2010	P		8.2	***	9<	ı
Acid Neutralisation Capacity	2015	Z	mol/kg	0.011	**	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	Limit values for compliance leaching test	aching test
			mg/l	mg/kg	using B	using BS EN 12457 at L/S 10 l/kg	10 l/kg
Arsenic	1455	Ŋ	0.0003	0:0030	0.5	2	25
Barium	1455	n	< 0.005	< 0.050	20	100	300
Cadmium	1455	ņ	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455	n	< 0.0005	< 0.0050	0.5	10	70
Copper	1455	n	0.0016	0.016	2	50	100
Mercury	1455	D	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455)	0.0006	0.0062	0.5	10	30
Nickel	1455	n	0.0008	0.0077	0.4	10	40
Lead	1455	⊃	< 0.0005	< 0.0050	0.5	10	50
Antimony	1455	n	< 0.0005	< 0.0050	90:0	0.7	3
Selenium	1455	n	< 0.0005	< 0.0050	0.1	0.5	7
Zinc	1455	n	0.003	0.035	4	50	200
Chloride	1220	n	< 1.0	< 10	008	15000	25000
Fluoride	1220	n	0.14	1.4	10	150	200
Sulphate	1220	n	2.3	23	1000	20000	50000
Total Dissolved Solids	1020	z	40	400	4000	00009	100000
Phenol Index	1920	n	< 0.030	< 0.30		-	1
Dissolved Organic Carbon	1610	ח	4.4	> 50	200	800	1000

	0.090	6.8
Solid Information	Dry mass of test portion/kg	Moisture (%)

Waste Acceptance Criteria

Project: 24665 / 1 Monaghan Town Active Travel Development Site(CORA)

Calcillest 500 (C).	23-19446				J. Handfill V	andfill Waste Accentance Criteria	Critoria
Chemtest Sample ID:	1653395					Limits	
Sample Ref:	AA200184					Stable, Non-	
Sample ID:						reactive	
Sample Location:	TP04					hazardous	Hazardous
Top Depth(m):	0.50				nert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	n	%	[A] 1.3	3	5	9
Loss On Ignition	2610	n	%	3.1	1	1	10
Total BTEX	2760	n	mg/kg	[A] < 0.010	9	ı	
Total PCBs (7 congeners)	2815	Z	mg/kg	[A] < 0.0010	-	4.0	1
TPH Total WAC	2670	n	mg/kg	[A] < 10	500	-	
Total Of 17 PAH's	2800	Z	mg/kg	[A] < 0.20	100	1.	
ЬН	2010	n		8.2	1	9<	
Acid Neutralisation Capacity	2015	Z	mol/kg	0.0060		To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	Limit values for compliance leaching test	aching test
			mg/l	mg/kg	using B.	using BS EN 12457 at L/S 10 I/kg	10 l/kg
Arsenic	1455	n	0.0003	0.0029	0.5	2	25
Barium	1455	n	< 0.005	< 0.050	20	100	300
Cadmium	1455	U	< 0.00011	< 0.0011	0.04	-	5
Chromium	1455	n	< 0.0005	< 0.0050	0.5	10	70
Copper	1455	n	0.0010	0.010	2	50	100
Mercury	1455	n	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455	ב	0.0008	0.0081	0.5	10	30
Nickel	1455	Ω	0.0005	0.0053	0.4	10	40
Lead	1455	7	< 0.0005	< 0.0050	0.5	0,	50
Antimony	1455	ח	< 0.0005	< 0.0050	90.0	0.7	5
Selenium	1455	n	< 0.0005	< 0.0050	0.1	0.5	
Zinc	1455	n	0.005	0.055	7	20	200
Chloride	1220	U	< 1.0	< 10	008	15000	25000
Fluoride	1220	Ų	0.12	1.2	10	150	500
Sulphate	1220	Û	< 1.0	< 10	1000	20000	20000
Total Dissolved Solids	1020	z	31	310	4000	00009	100000
Phenol Index	1920	n	< 0.030	< 0.30	-	•	
Dissolved Organic Carbon	1610	ב	3.5	< 50	200	800	1000

Solid Information	
Dry mass of test portion/kg	060'0
Moisture (%)	10

Waste Acceptance Criteria

Project: 24665 / 1 Monaghan Town Active Travel Development Site(CORA)

Chemtest Job No:	23-19446				Landfill V	Landfill Waste Acceptance Criteria	e Criferia
Chemtest Sample ID:	1653398					Limits	
Sample Ref:	AA200195					Stable, Non-	
Sample ID:						reactive	
Sample Location:	TP08					hazardous	Hazardous
Top Depth(m):	0.80				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	n	%	[A] 0.77	3	S	9
Loss On Ignition	2610	Ŋ	%	2.8		ļ	10
Total BTEX	2760	n	mg/kg	[A] < 0.010	ගු	1	1
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	Į		t
TPH Total WAC	2670	U	mg/kg	[A] < 10	200	ì	1
Total Of 17 PAH's	2800	N	mg/kg	[A] < 0.20	100	-	-
Hd	2010	U		8.4		9<	l
Acid Neutralisation Capacity	2015	Z	бұ/₃ош	0.017	1	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	Limit values for compliance leaching test	eaching test
			mg/i	mg/kg	using B	using BS EN 12457 at L/S 10 l/kg	10 l/kg
Arsenic	1455	n	9000.0	0.0061	9'0	2	25
Barium	1455	U	< 0.005	< 0.050	20	100	300
Cadmium	1455	O	< 0.00011	< 0.0011	0.04	-	5
Chromium	1455	, n	< 0.0005	< 0.0050	0.5	10	70
Copper	1455	U	0.0006	0.0060	2	90	100
Mercury	1455	Ų	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455	Ŋ	0.0008	0.0076	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0050	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0050	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0050	90.0	2.0	5
Selenium	1455	n	< 0.0005	< 0.0050	0.1	5.0	7
Zinc	1455	Ð	0.003	0.034	4	50	200
Chloride	1220	n	< 1.0	< 10	800	15000	25000
Fluoride	1220	n	0.096	< 1.0	10	150	500
Sulphate	1220	n	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	z	31	310	4000	60000	100000
Phenol index	1920	⊃	< 0.030	< 0.30	*-	ł	•
Dissolved Organic Carbon	1610	D	3.0	< 50	500	800	1000

Ë	
Dry mass of test portion/kg	0.090
Moisture (%)	10

Waste Acceptance Criteria

Project: 24665 / 1 Monaghan Town Active Travel Development Site(CORA)

Chemtest Job No:	23-19446				Tandfill	Landfill Waste Acceptance Criteria	e Criteria
Chemtest Sample ID:	1653402					Limits	
Sample Ref:	AA205173					Stable, Non-	
Sample ID:						reactive	
Sample Location:	TP13					hazardous	Hazardous
Top Depth(m):	0.60				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	n	%	[A] 0.34	9	5	9
Loss On Ignition	2610	n	%	4.7	ł	1	10
Total BTEX	2760	ñ	mg/kg	[A] < 0.010	9	***	
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1	1	1
TPH Total WAC	2670	n	mg/kg	[A] < 10	500		1
Total Of 17 PAH's	2800	Z	mg/kg	[A] < 0.20	100	ŀ	ļ
Hd	2010	n		7.8		9×	1
Acid Neutralisation Capacity	2015	Z	mol/kg	0600'0	*;	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	Limit values for compliance leaching test	eaching test
			mg/l	mg/kg	using B	using BS EN 12457 at L/S 10 l/kg	i 10 l/kg
Arsenic	1455	n	0.0019	0.019	0.5	2	25
Barium	1455	n	< 0.005	< 0.050	20	100	300
Cadmium	1455	n	< 0.00011	< 0.0011	0.04		5
Chromium	1455	n	0.0036	960.0	0.5	10	70
Copper	1455	n	0.0058	0.058	2	20	100
Mercury	1455	n	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455	n	0.0004	0.0043	0.5	10	30
Nickel	1455	U	0.0056	0.056	0.4	10	40
Lead	1455	⊃	0.0013	0.013	0.5	10	50
Antimony	1455	Ω	< 0.0005	< 0.0050	0.06	0.7	5
Selenium	1455	n	< 0.0005	< 0.0050	0.1	0.5	7
Zinc	1455	Ŋ	0.010	0.10	4	50	200
Chloride	1220	n	1.1	11	008	15000	25000
Fluoride	1220	n	0.12	1.2	10	150	500
Sulphate	1220	n	2.0	20	1000	20000	50000
Total Dissolved Solids	1020	Z	13	130	4000	00009	100000
Phenol Index	1920	∩	< 0.030	< 0.30	τ-	1	-
Dissolved Organic Carbon	1610	Û	5.7	57	500	800	1000

Solid Information	
Dry mass of test portion/kg	0:030
Moisture (%)	19

Waste Acceptance Criteria

Deviations

In accordance with UKAS Policy on Deviating Samples TPS 63. Chemtest have a procedure to ensure 'upon receipt of each sample a competent laboratory shall assess whether the sample is suitable with regard to the requested test(s)'. This policy and the respective holding times applied, can be supplied upon request. The reason a sample is declared as deviating is detailed below. Where applicable the analysis remains UKAS/MCERTs accredited but the results may be compromised.

Sample:	Sample Ref:	Sample ID:	Sample Location:	Sampled Date:	Deviation Code(s):	Containers Received:
1653387	AA192931		BH01		A	Amber Glass 250ml
1653387	AA192931		BH01		А	Plastic Tub 500g
1653388	AA197802		BH02		A	Amber Glass 250ml
1653388	AA197802		BH02		А	Plastic Tub 500g
1653389	AA192934		BH03		A	Amber Glass 250ml
1653389	AA192934		BH03		А	Plastic Tub 500g
1653390	AA192939		ВН04А		A	Amber Glass 250ml
1653390	AA192939		BH04A		А	Plastic Tub 500g
1653391	AA192947		BH05		A	Amber Glass 250ml
1653391	AA192947		BH05		А	Plastic Tub 500g
1653392	AA171710		BH07		Α	Amber Glass 250ml
1653392	AA171710		BH07		А	Plastic Tub 500g
1653393	AA200193		TP01		А	Amber Glass 250ml
1653393	AA200193		TP01		А	Plastic Tub 500g
1653394	AA200179		TP03		А	Amber Glass 250ml
1653394	AA200179		TP03		А	Plastic Tub 500g
1653395	AA200184		TP04		Α	Amber Glass 250ml
1653395	AA200184		TP04		Α	Plastic Tub 500g
1653396	AA200182		TP05		Α	Amber Glass 250ml
1653396	AA200182		TP05		А	Plastic Tub 500g
1653397	AA200188		TP07		Α	Amber Glass 250ml
1653397	AA200188		TP07		А	Plastic Tub 500g

Deviations

In accordance with UKAS Policy on Deviating Samples TPS 63. Chemtest have a procedure to ensure 'upon receipt of each sample a competent laboratory shall assess whether the sample is suitable with regard to the requested test(s)'. This policy and the respective holding times applied, can be supplied upon request. The reason a sample is declared as deviating is detailed below. Where applicable the analysis remains UKAS/MCERTs accredited but the results may be compromised.

Sample:	Sample Ref:	Sample ID:	Sample Location:	Sampled Date:	Deviation Code(s):	Containers Received:
1653398	AA200195		TP08		A	Amber Glass 250ml
1653398	AA200195		TP08		А	Plastic Tub 500g
1653399	AA200196		TP08		А	Amber Glass 250ml
1653399	AA200196		TP08		А	Plastic Tub 500g
1653400	AA200191		TP09		А	Amber Glass 250ml
1653400	AA200191		TP09		А	Plastic Tub 500g
1653401	AA205178		TP12		А	Amber Glass 250ml
1653401	AA205178		TP12		А	Plastic Tub 500g
1653402	AA205173		TP13		А	Amber Glass 250ml
1653402	AA205173		TP13		A	Plastic Tub 500g
1653403	AA205175		TP14		A	Amber Glass 250ml
1653403	AA205175		TP14		А	Plastic Tub 500g
1653404	AA205176		TP14		А	Amber Glass 250ml
1653404	AA205176		TP14		Α	Plastic Tub 500g

Test Methods

SOP	Title	Parameters included	Method summary
1010	pH Value of Waters	Ηα	pH Meter
1020	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Conductivity Meter
1220	Anions, Alkatinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.
1455	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	determination by inductively coupled plasma
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation
1800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Waters by GC-MS	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Pentane extraction / GCMS detection
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.
2010	pH Value of Soils	pH	pH Meter
2015	Acid Neutralisation Capacity	Acid Reserve	Titration
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2175	Total Sulphur in Soils	Total Sulphur	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2180	Sulphur (Elemental) in Soils by HPLC	Sulphur	Dichloromethane extraction / HPLC with UV detection
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2220	Water soluble Chloride in Soils	Chloride	Aqueous extraction and measuremernt by 'Aquakem 600' Discrete Analyser using ferric nitrate / mercuric thiocyanate.
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2325	Sulphide in Soils	Sulphide	Steam distillation with sulphuric acid / analysis by 'Aquakem 600' Discrete Analyser, using N,N-dimethyl-p-phenylenediamine.
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.
2455	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.

Test Methods

SOP	Title	Parameters included	Method summary
2610	Loss on Ignition	loss on ignition (LOI)	Determination of the proportion by mass that is lost from a soil by ignition at 550°C.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3-band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID
2680	TPH A/A Split	Aliphatics: >C5-C6, >C6-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44Aromatics: >C5-C7, >C7-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44	Dichloromethane extraction / GCxGC FID detection
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-MS	Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene*	Dichloromethane extraction / GC-MS
2815	Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS	ICES7 PCB congeners	Acetone/Hexane extraction / GC-MS
2920	Phenois in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.
640	Characterisation of Waste (Leaching C10)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge

Report Information

Key	
U	UKAS accredited
М	MCERTS and UKAS accredited
Ν	Unaccredited
s	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
SOP	Standard operating procedure
LOD	Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

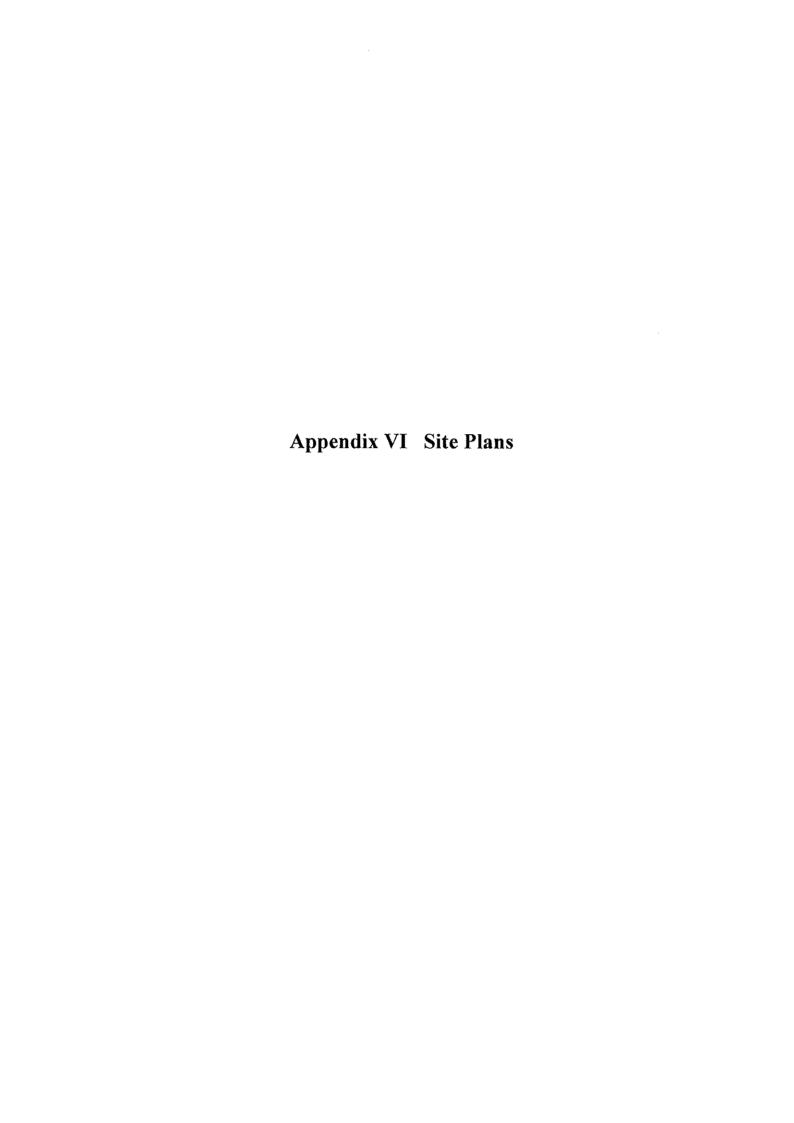
The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

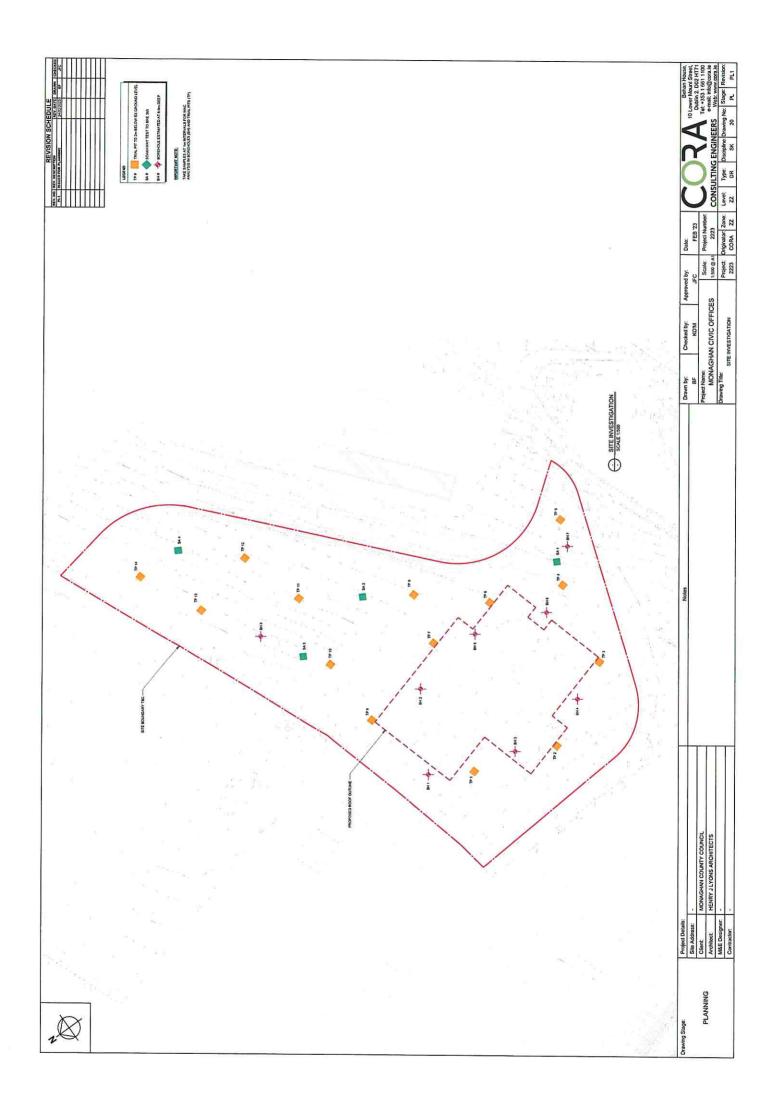
For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes


- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)


Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

PROPOSED DEVELOPMENT ACTIVE TRAVEL ROADWAY MONAGHAN MONAGHAN CO. COUNCIL

DBFL

CONSULTING ENGINEERS

CONTENTS

I INTRODUCTION
II FIELDWORK
III TESTING
III DISCUSSION

APPENDICES

I	BORING RECORDS
II	ROTARY CORE LOGS
III	TRIAL PIT RECORDS
IV	BRE DIGEST 365 DATA
\mathbf{V}	CBR by PLATE TEST
VI	SLIT TRENCHES
VII	SHEAR VANE TESTS

VIII LABORATORY

a. Geotechnical Soil and Rock Datab. Chemical and Environmental Data

IX SITE PLAN

FOREWORD

The following Conditions and Notes on Site Investigation Procedures should be read in conjunction with this report.

General.

Recommendations made, and opinions expressed in the report are based on the strata observed in the exploratory holes, together with the results of in-situ and laboratory tests. No responsibility can be held for conditions which have not been revealed by exploratory work, or which occur between exploratory hole locations. Whilst the report may suggest the likely configuration of strata, both between exploratory hole locations, or below the maximum depth of the investigation, this is only indicative, and liability cannot be accepted for its accuracy.

Unless specifically stated, no account has been taken of possible subsidence due to mineral extraction below or close to the site.

Standards

The ground investigation works for this project have been carried out by IGSL in accordance with Eurocode 7 - Part 2: Ground Investigation & Testing (EN 1997-2:2007). This has been used together with complementary documents such as BS 5930 (1999), BS 1377 (Parts 1 to 9) and Engineers Ireland Specification & Related Documents for Ground Investigation in Ireland (2006). The following Irish (IS) and European Standards or Norms are referenced:

- IS EN 1997-2 Eurocode 7: 2007 Geotechnical Design Part 2: Ground Investigation & Testing
- IS EN ISO 22475-1:2006 Geotechnical Investigation and Sampling Sampling Methods
 & Groundwater Measurements
- IS EN ISO 14688-1:2002 Geotechnical Investigation and Testing Identification and Classification of Soil, Part 1: Identification and Description
- IS EN ISO 14688-2:2004 Geotechnical Investigation and Testing Identification and Classification of Soil, Part 2: Classification Principles

Routine Sampling.

Undisturbed samples of soils, predominantly cohesive in nature are obtained unless otherwise stated by a 104mm diameter open-drive tube sampler or Piston Sampler. In granular soils, and where undisturbed sampling is inappropriate, disturbed samples are collected. Smaller disturbed samples are also recovered at intervals to allow a visual examination of the full strata section.

In-Situ Testing.

Standard penetration tests were conducted strictly in accordance with Section 4.6 of IS EN 1997-2:2007. The SPT equipment (hammer energy test) has been calibrated in accordance with EN ISO 22476-3:2005 to obtain the Energy Ratio (E_r) of each hammer. A calibration certificate is available upon request. The E_r is defined as the ratio of the actual energy E_{meas} (measured energy during calibration) delivered to the drive weight assembly into the drive rod below the anvil, to the theoretical energy (E_{theor}) as calculated from the drive weight assembly. The recorded number of blows (N) reported on the engineering logs are uncorrected. In sands, the energy losses due to rod length and the effect of the overburden pressure should be taken into account (see IS EN ISO 22476-3:2005).

Groundwater

The depth of entry of any influx of groundwater is recorded during the course of boring operations. However, the normal rate of boring does not usually permit the recording of an equilibrium level for any one water strike. Where possible drilling is suspended for a period of twenty minutes to monitor the subsequent rise in water level. Groundwater conditions observed in the borings or pits are those appertaining to the period of investigation. It should be noted however, that groundwater levels are subject to diurnal, seasonal and climatic variations and can also be affected by drainage conditions, tidal variations etc.

Engineering Logging

Soil and rock identification has been based on the examination of the samples recovered and conforms with IS EN ISO 14688-1:2002 and IS EN ISO 14689-1:2004.

Where peat has been encountered during site works, samples have been logged in accordance with the Von Post Classification (ref. Von Post, L. 1992. Sveriges Gologiska Undersoknings torvinventering och nogra av dess hittils vunna resultat (SGU peat inventory and some preliminary results) Svenska Mosskulturforeningens Tidskrift, Jonkoping, Swedden, 36, 1-37 & Hobbs N. B. Mire morphology and the properties of some British and foreign peats. QJEG, Vol. 19, 1986).

Retention of Samples.

After satisfactory completion of all the scheduled laboratory tests on any sample, the remaining material is discarded unless a period of retention of samples is agreed, it is our normal practice to discard all soil samples one month after submission of our final report.

Reporting

Recommendations made and opinions expressed in this report are based on the strata observed in the exploratory holes, together with the results of in-situ and laboratory tests. No responsibility can be held by IGSL Ltd for ground conditions between exploratory hole locations.

The engineering logs provide ground profiles and configuration of strata relevant to the investigation depths achieved and caution should be taken when extrapolating between exploratory points. No liability is accepted for ground conditions extraneous to the investigation points. Unless specifically stated, no account has been taken of possible subsidence due to mineral extraction, mining works or karstification below or close to the site.

This report has been prepared for the project client and the information should not be used without prior written permission. Any recommendations developed in this report specifically relate to the proposed development. IGSL Ltd accepts no responsibility or liability for this document being used other than for the purposes for which it was intended.

REPORT ON A SITE INVESTIGATION

ACTIVE TRAVEL PROJECT FOR MONAGHAN COUNTY COUNCIL

DBFL CONSULTING ENGINEERS

Report No. 24665/1

July 2023

I Introduction

A major new development is proposed for Monaghan Town involving construction of new roads to augment existing routes.

An investigation of sub soil conditions in the various areas of the new development has been carried out by IGSL for DBFL, Consulting Engineers, on behalf of Monaghan County Council.

The scheduled site investigation included the following elements.

*	Cable Percussion Boreholes	2 nr.
•	Rotary Core Holes	2 nr.
•	Standpipe Installations	2 nr.
•	Trial Pits	9 nr.
•	CBR by Plate Test	9 nr.
•	BRE Digest 365 Infiltration Tests	4 nr.
•	Slit Trenches	3 nr.
•	Vane Shear Tests	3 nr.
•	Geotechnical Soil and Rock Laboratory	Tests
*	Chemical and Environmental Laborate	oryTests

This report includes all factual data from field and laboratory operations and discusses these findings relative to foundation and infrastructural design for the proposed new developments.

II Fieldwork

This development is to take place along new access roadways in Monaghan Town.

The exploratory locations are noted on the drawings enclosed in Appendix IX and were marked out by IGSL on site. All locations have been referenced to national grid and ground levels established.

The various elements of the investigation are detailed in the following paragraphs. All field works were supervised by an experienced geotechnical engineer who carefully recorded stratification, took photographs as necessary, recovered samples and prepared detailed records.

Close liaison was maintained throughout with DBFL Consulting Engineers and Monaghan County Council personnel.

All appropriate documentation was submitted and approved prior to site commencement. Each location was scanned electronically (CAT) to ensure that existing services were not damaged. A shallow trial pit was also opened by hand at borehole / corehole locations to confirm this.

Drawings from the various utilities have been examined to ensure that major services were avoided.

Statutory HSE safety precautions relating to general safety and COVID 19 were strictly observed, with working areas restricted to IGSL personnel only, to ensure safety of the general public.

Boreholes

Boreholes were 200mm diameter and were constructed using conventional cable percussion equipment. Holes were referenced BH01 and BH02. A trial pit was opened at each borehole location to 1.00 metre deep to ensure that underground services were not damaged.

The holes were located either side of the existing canal, where a new bridge is proposed. Commencing surface in both locations was topsoil / grass.

BH02 was relocated slightly northwards because of safety of access at the original position.

Detailed geotechnical records are contained in Appendix I to this report - the records give details of stratification, sampling, in-situ testing and groundwater. Note is also taken of any obstructions to normal boring requiring the use of the heavy chisel for advancement. It was not possible to recover undisturbed samples because of the hard and granular nature of the strata encountered.

BH01 on the northern side of the stream encountered soft to firm slightly gravelly SILT/CLAY to a depth of 3.20 metres. Stiff grey gravelly SILY/CLAY extends from 3.20 to 4.00 metres and overlies dense sandy GRAVEL from 4.00 to 4.60 metre. Boring was terminated on boulder obstruction following a period of chiselling at 4.60 metres BGL.

At **BH02** stiff brown sandy gravelly CLAY, typically containing cobble and boulder material, is encountered at 1.20 metres below variable FILL. This stratum continues to about 3.50 metres where dense GRAVEL is again encountered. This borehole was terminated on boulder obstructions in the gravel at 4.40 metres.

The stiff brown or grey gravelly CLAY encountered in both boreholes is a GLACIAL TILL or BOULDER CLAY with the high percentage of coarse material typical of the stratum.

The final refusal depths are **NOT** indicative of rock horizon.

Ground water ingress was noted in both locations, in association with the GRAVEL stratum. Details are noted on the individual records.

Rotary Core Drilling

Rotary core drilling was employed at the borehole locations to advance investigation depth, establish bedrock horizon and recover representative rock core.

A BT-44 drilling rig was used to drill in each location using triple tube core drilling technique and an air-mist coolant. Symmetrix open hole drilling (100mm diameter) was used through the overburden deposits.

Detailed drilling records are presented in Appendix II with accompanying core photographs. The records note Total and Solid Core Recovery (TCR / SCR) and provide a detailed geological description of the bedrock.

Drilling continued in stiff gravelly CLAY (Boulder Clay) in each location to respective depths of 7.50 metres, with numerous boulders noted.

Bedrock was noted at 7.50 metres and 3.00 metres of solid core was recovered Strong to very strong blue grey fine grained LIMESTONE has been identified by the geologist.

A slotted PVC standpipe was installed in both locations to facilitate on-going monitoring of ground water level. The installations were sealed at surface and protected by a steel cover. While no free water was noted during drilling, water level was noted in the standpipes at the end of drilling.

Sub samples of the core were selected for Point Load Test in the laboratory.

The rotary core findings are summarised in the following table.

Hole No.	Overburden	Core Recovered	Standpipe Water Level	
RC01 R	0 – 7.50	7.50 – 10.50	0 – 10.50 (6.55 m BG)	
RC02 R	0 - 7.50	7.50 - 10.50	0 – 10.50 (4.85 m BG)	

Trial Pits

Trial Pits were scheduled in nine locations widely spaced along the new routes and referenced TP01R to TP09R. A tracked excavator was used under engineering supervision. Detailed records with supporting photographs for each location are presented in Appendix III. These records note the soil stratification and record sampling and ground water details.

Trial Pits TP01 to TP05 located in the lower southern area encountered MADE GROUND deposits to varying depths overlying soils varying from very soft SILT (TP01) to soft to firm brown sandy gravelly CLAY (TP03 to TP05). TP02 encountered MADE GROUND to the full-excavated depth of 2.50 metres.

Trial Pits TP06 to TP09 all noted topsoil overlying brown gravelly CLAY (boulder clay). The stratum is initially soft to firm, increasing in strength with penetration to firm/stiff. Excavation depths varied from 1.50 to 2.30 metres, with boulder obstructions preventing advancement. Ground water was noted in several locations.

Trial Pit details are summarised as follows:

Ref No.	Fill	Soft Silt Clay	Firm Stiff gravelly CLAY	Water
TP01R	0-2.10	2.10 - 2.60		2.10
TP02R	0 - 2.50			Dry
TP03R	0 - 1.70	1.79 - 2.20	2.20 - 3.00	Dry
TP04R	0 - 1.40	1.40 - 2.00	2.00 - 3.00	Dry
TP05R	0 - 1.70		1.70 - 1.80	Dry

Ref No.	Topsoil	Soft gravelly Clay	Firm gravelly CLAY	Water
TP06R	0 - 0.20	0.20 - 0.50	0.50 - 1.70	1.00
TP07R	0 - 0.20	0.20 - 0.50	0.50 - 2.30	Dry
TP08R	0 - 0.25	0.25 - 0.85	0.85 - 1.80	1.80
TP09R	0 - 0.25	0.25 - 0.50	0.50 - 1.50	0.50

Trial Pits were backfilled with the excavated spoil, compacted in layers, the disturbed areas were levelled and coarse material was removed.

BRE Digest 365 Test

Infiltration testing was performed at six locations as specified in accordance with BRE Digest 365 'Soakaway Design'. Tests are referenced SA01R to SA06R. Detailed data is presented in Appendix IV. All locations have been surveyed with co-ordinates provided.

To obtain a measure of the infiltration rate of the sub-soils, water is poured into the test pit, and records taken of the fall in water level against time. The test is carried out over two cycles following initial soakage.

The infiltration rate is the volume of water dispersed per unit exposed area per unit of time, and is generally expressed as metres/minute. In these calculations the exposed area is the sum of the base area and the average internal area of the permeable stratum over the test duration. Design is based on the slowest infiltration rate, which has been calculated from the final cycle.

The stratification in the test areas comprised Topsoil over either MADE GROUND or soft to firm brown gravelly CLAY. Details are noted with photographs on the individual records.

Results are summarised as follows:

Test No.	Depth	Soil Type	Infiltration Rate (f) (Metres/ Minute)	
SA01R	1.70	MADE GROUND	0.0000 (Fail)	
SA02R	1.30	MADE GROUND	4E-05	
SA03R	1.70	MADE GROUND	0.0000 (Fail)	
SA04R	1.60	MADE GROUND	0.00102	
SAO5R	1.40	Gravelly CLAY	0.00028	
SA06R	1.60	Gravelly CLAY	0.0000 (Fail)	

The results confirm zero to very low permeability for the cohesive gravelly clay soils present on the site.

Plate Bearing Tests

In situ CBR value and Modulus of Subgrade Reaction was established by Plate Bearing Test. Tests are referenced PBT01R to PBT 09R and were located at the similarly numbered Trial Pit locations.

A steel plate is loaded and off-loaded incrementally over two stages and the deflection under load and recovery under off-load is measured by a system of dial gauges. The data is processed and load settlement graphs are prepared. An equivalent CBR value is calculated in accordance with NRA HD25-26/10.

Results are summarised in the following table and individual test records are found in Appendix V.

Deptl	ı Soil Type	CBR at Load Cycle (%)	CBR at Reload (%)	
0.50	FILL	1.3	2.3	
0.50	FILL	1.1	1.5	
0.60	FILL	1.0	1.3	
0.60	FILL	1.1	1.2	
0.50	FILL	3.1	3.5	
0.60	Clay	1.1	10.6	
0.60	Clay	2.3	2.9	
0.60	Clay	1.3	3.8	
0.60	Clay	3.8	9.5	
	0.50 0.50 0.60 0.60 0.50 0.60 0.60	0.50 FILL 0.50 FILL 0.60 FILL 0.60 FILL 0.50 FILL 0.60 Clay 0.60 Clay 0.60 Clay	0.50 FILL 1.3 0.50 FILL 1.1 0.60 FILL 1.0 0.60 FILL 1.1 0.50 FILL 3.1 0.60 Clay 1.1 0.60 Clay 2.3 0.60 Clay 1.3	

Slit Trenches

Four slit trenches were opened in specified locations and are referenced ST01 to ST04.

Trenches were opened using a combination of machine and hand excavation. Hard surfaces were saw cut prior to removal of surfacing. Trenches were 0.50 or 1.00 metres wide and were excavated to depths between 1.30 and 1.80 metres.

Detailed records of each excavation are presented in Appendix VI. These note the trench dimensions, record all services encountered and note the stratification. Photographs of each excavation are also included with the detailed records.

Trench lengths were respectively 12.50 metres, 12.10 metres, 14.85 metres and 14.50 metres.

Shear Vane Tests

Shear vane tests were scheduled at three locations along the canal greenway. A GEONOR H-10 Vane was employed (130mm long X 65mm wide).

Tests were attempted at three depths in each location. In all instances refusal of apparatus was recorded on dense coarse subsoil/fill. Data for each vane test is presented in Appendix VII. Tests are referenced SV01 to SV03.

The stratification was established by Window Sampling and the detailed geotechnical records for each location are presented with the Vane Test data.

In addition HD Dynamic Probes were driven at each location to establish a strength depth pattern for the sub soils. Probe records are also included with the Vane Shear data

MADE GROUND was noted in each location, extending to at least 2.00 metres at SV01 with refusal noted at this depth. Heavy duty probing suggests that variable FILL material may extend to in excess of 3.00 metres in places.

At SV02 and SV03 coarse dense FILL of gravelly CLAY extended to respective depths of 2.50 and 2.00 metres. Stiff gravelly SILT/CLAY was noted below the FILL.

III. Testing

In Situ

Standard penetration tests were carried out at approximate 1.00 metre intervals in the geotechnical boreholes and at 1.50 metres in the Rotary Core Holes to measure relative in-situ soil strength. N values are noted in the right hand column of the individual records, representing the blow count required to drive the standard sampler 300mm into the soil, following initial seating blows. Where full test penetration was not achieved the blow count for a specific penetration is recorded, or refusal is indicated where appropriate. The results of the tests are summarised as follows:

STRATUM	N VALUE RANGE	COMMENT	
Gravelly CLAY (Bot	ulder Clay)		
1.00 m BGL	6 to 13	Soft to Firm	
2.00 m BGL	10 to 29	Firm to Stiff	
3.00 m BGL	26 to 50	Stiff to Hard	
4.00 m BGL	> 50	Hard	
4.00 to 15.00 m BGL			
(Rotary Holes)	40 to >50	Hard	

Limited penetration SPT tests with refusal were recorded on numerous occasions, reflecting a high concentration of cobble / boulder material in the glacial till

Laboratory

A programme of laboratory testing was scheduled following completion of site operations. Geotechnical testing was carried out by IGSL in it's INAB-Accredited laboratory. Chemical and environmental testing was carried out in the UK by EUROFINS / CHEMTEST Ltd. The test programme included the following elements:

Liquid and Plastic Limits / Moisture Content	IGSL
PSD Grading by Wet Sieve and Hydrometer	IGSL
MCV	IGSL
CBR	IGSL
Compaction	IGSL
Point Load Tests	IGSL
Organic Content	EUROFINS
Sulphate / Chloride / pH	EUROFINS
RILTA Suite Environmental	EUROFINS

All laboratory data is presented in Appendices VIIIa and VIIIb and individual tests are discussed briefly as follows:

Index Properties / Natural Moisture Content

Classification tests have been carried out on samples of the cohesive soils from borehole and trial pit locations.

The results indicate some variation in composition of the soils from CLAY to SILT matrix. The SILT matrix till generally occurs at shallow depth below the topsoil while the CLAY dominant till is noted at greater depth and represents glacial till or boulder clay deposition.

The gravelly CLAY plots in the CI/CL zone of the standard Classification chart indicative of low plasticity soil. Natural Moisture Content ranges from 12 to 26%.

Grading

Wet sieve and hydrometer analysis has been carried out on samples of the cohesive soils from both boreholes and trial pits. The graphs are typically straight line, grading from the fine clay to coarse gravel fraction. The pattern is very typical of glacial till or boulder clay deposition. One sample from the base of BH02 confirms the stratum as clean well-graded fine to coarse GRAVEL with less than 4% passing to the sand fraction

MCV/CBR/Compaction

Four large bulk samples were selected from Trial Pits 04 / 06 / 08 and 09 and a series of tests were scheduled to establish the soil characteristics relative to re-use during the new development.

The tests carried out included MCV (Moisture Condition Value), CBR (California Bearing Ratio), Dry Density / Moisture Content relationship.

The results are summarised as follows:

Ref No.	TP04R	TP06R	TP08R	TP09R
Depth	1.70	0.70	0.70	0.60
Natural MC (%)	16	20	23	17
MCV	5.4	4.6	5.7	6.8
CBR (%)	1.25	0.9	1.45	1.9
Max. Dry Density (mg/cu.m.)	2.01	1.89	1.80	1.84
Optimum Moisture (%)	8.1	11	11	11

Organic Content

Three samples of the soils from the site had organic contents established. Samples were generally taken from shallow depths below the topsoil. Values of 1.3 and 2.0% were determined for two locations indicative of very low to negligible organic content. One elevated level of 9.1% was recoded in the FILL material in TP01R.

Point Load Tests

Sub samples of the recovered limestone core have been selected for Diametrial Testing in The Point Load Apparatus. A total of 6 tests were performed and equivalent UCS values have been calculated. Rock strength (UCS) varies from 60 to 136 MPa (with an average value of 101 MPa). This confirms the medium strong to strong classification by the engineering geologist during detailed core logging.

Chemical Suite (Sulphate Chloride pH)

Four samples were sent for analysis to BRE Chemical Suite parameters. Sulphate concentrations (SO4 2:1 extract) of <0.010 g/l were established with pH values ranging from 8.1 to 8.3. Chloride concentrations (<0.010 to 0.016 g/l) were also determined.

The results indicate a design class of DS-1 (ACEC Classification for Concrete) for sulphate concentrations below 0.5 g/l. No special precautions are necessary to protect below ground foundation concrete.

RILTA Environmental Suite

Seven samples of the sub soils were sent to specialist environmental laboratory EUROFINS and testing was carried out in accordance with RILTA requirements to establish Landfill Waste Acceptance Criteria (WAC).

Detailed results are presented in Appendix VIIIb. In three samples elevated levels of Total Organic Carbon (TOC), Hydrocarbon (Total WAC) and Total Dissolved Solids were established. These are highlighted on the detailed laboratory data sheets.

The elevated levels were obtained from samples from the lower levels of the site where significant depths of MADE GROUND occur. Tests on samples from the higher natural ground to the north of the site were all classed as INERT.

A comprehensive Waste Characterisation Assessment (WCA) will be required by landfill operators. This can be prepared by specialist environmental consultants using the factual data from field and laboratory as presented in this report.

Asbestos screening was carried out on all RILTA samples with no traces of Asbestos noted.

IV. Discussion:

A major development is being undertaken at this site in Monaghan. A new CIVIC CENTRE is to be constructed for Monaghan County Council and a NEW ROAD is to be provided to access the Civic Centre.

A detailed geotechnical investigation has been carried out by IGSL under the direction of DBFL Consulting Engineers.

The factual data from the field and laboratory operations is presented in Sections 1 to III of this report.

This part of the report comments on the various findings with various recommendations for the proposed construction programme.

For the purposes of this report the investigation has been sub-divided into a number of parts as follows:

- A; Section from Roosky Vale Eastwards to Proposed New Bridge
- B New Bridge
- C Proposed Road North from new bridge to proposed CIVIC CENTRE
- D Roadway north of CIVIC CENTRE to temporary turning area.

A: NEW ROADWAY Rooskey Vale to New Bridge

This section is parallel to the Ulster Canal Greenway on level ground (OD 56 to 57 metres)

On this section of the proposed development MADE GROUND has been identified in Trial Pits, Window Samples and Slit Trenches extending to depths in excess of 2.00 metres.

Firm grey brown gravelly SILT/CLAY (TILL) was noted in places below the FILL.

The MADE GROUND is variable in composition and in strength with brick, plastic, timber and concrete fragments in a gravelly SILT/CLAY matrix. CBR values of 1 to 2% were recorded at 0.50 metres BGL.

Environmental test data indicates that the MADE GROUND contains elevated levels of contaminated material and may NOT be classed as INERT.

Road construction should comply with current NRA specifications and guidelines. A general discussion of pavement construction on MADE GROUND is included on Page 14 of this document.

The construction programme should included Plate Bearing Tests at intervals to confirm acceptable CBR values on the placed granular fill.

B: NEW BRIDGE

The ground conditions at either side of the stream have been determined by Borehole and Rotary Core Drilling.

At BH01 firm grey gravelly CLAY is noted from 1.10 to 3.20 metres overlying very stiff gravelly CLAY and dense GRAVEL from 4.00 to 4.60 metres. Proof core drilling has established solid limestone bedrock at 7.50 metres BGL, proof cored to 10.50 metres.

BH02 penetrated MADE GROUND to 2.20 metres overlying stiff grey gravelly CLAY and GRAVEL from 3.50 to 4.40 metres. Bedrock was again confirmed from 7.50 to 10.50 metres BGL.

Ground water ingress was noted in both locations in association with the GRAVEL stratum Standpipes were installed to allow long term ground water observation.

In-situ tests have indicated a stratum of stiff grey gravelly CLAY (Boulder Clay) in both boreholes at respective depths of 3.20 and 2.20 metres with an allowable bearing pressure of 150 kPa at 3.00 metre BGL.

Construction of conventionally excavated abutments can be considered, however the depth of excavation (> 3.00 metres) and the presence of ground water suggests that PILING may present a more suitable option from both an engineering and economic viewpoint. LIMESTONE bedrock was confirmed by core drilling at 7.50 metres and will provide the founding medium for PILING.

Specialist Piling contractors should be consulted to establish the most suitable piling technique for this particular location.

C: ROADWAY FROM BRIDGE NW TO CIVIC OFFICES SITE

Trial Pits and CBR tests 4, 5 and 7 were constructed along this section, with ground level increasing from 56 metres OD (TP04R and TP05R) to 72 metres OD (TP07).

The lower part of the route comprises MADE GROUND (1.50 to 1.70 metres) overlying firm grey brown sandy gravelly CLAY (TILL).

TP07R at the NW end encountered virgin soils with Stiff BROWN BOULDER CLAY penetrated from 0.50 to 1.50 metres.

CBR values of 1% to 3% were recorded at 0.50 metres BGL.

A significant increase in CBR values would be expected in the stiff gravelly CLAY encountered in the vicinity of TP07.

It should be noted that an elevated level of Total Organic Carbon was identified in a sample of MADE GROUND from TP05R.

Construction in this area will be similar to that outlined in Area A. The reduced thickness of MADE GROUND in this area is noted and the removal of this material prior to road construction may be an economic option.

D: ROADWAY FROM TP07 TO TP09

This final section slopes steeply (72 to 82 OD approximately) in GLACIAL TILL deposits. The stratification is of topsoil with a thin soft clay layer (GL to 0.50 metres) overlying firm to stiff grey brown gravelly CLAY. A CBR of at least 3% can be assumed at 0.50 metres BGL. CBR values should increase significantly in the stiff gravelly boulder clay. The firm/stiff boulder clay will be quite suitable for road construction.

Given the variations in site levels it is likely that significant cut and fill operations will be required. No major issues will arise with excavation, other than the presence of boulder obstructions and possibly water ingress if gravel zones are encountered.

A detailed programme of laboratory testing has been carried out to establish soil parameters relative to the suitability of excavated material for re-use as engineered fill.

The results reflect a high degree of consistency in the boulder clay over the site area and will allow the appointed contractor to design a suitable programme for earthworks on this site.

GENERAL COMMENTS ON PAVEMENT CONSTRUCTION PARTICULARLY ON MADE GROUND

The trial pits revealed Made Ground to depths in excess of 2.5 metres.

The Made Ground should be assumed to be a heterogeneous material that has not been placed or compacted in an engineering manner, and therefore, variations in its composition and degree of compaction should be anticipated. Organic matter was also noted within the Made Ground in some trial pits.

In view of the anticipated variations within the Made Ground, the capping thicknesses should be designed in accordance with NRA HD 25-26/10 with reference to Section 3.23 ("Soft Subgrades").

In accordance with the aforementioned design manual, soft subgrades can either be improved (e.g. using lime) or removed and replaced with a more suitable material. The thickness removed will typically be between 0.5 and 1.0 m. Although the new material may be of good quality, the new subgrade should be assumed to be equivalent to one of a CBR of 2.5%.

For this site, close inspection of the prepared formation in conjunction with plate bearing tests will be essential to verify the design CBR value and to identify any soft, loose or organic zones. Any residual zones of soft or organic subgrade should be removed and replaced with 6F capping or starter layer material (Class 6A / 6B). Where the soft ground is deep, the removal and replacement of up to 1 metre of subgrade can be expected.

Due to the anticipated high variability of the formation soils, a geotextile separator at subgrade level and geogrid reinforcement within the capping layer would be recommended.

Stripped subgrade should be protected from surface water ingress or disturbance from unnecessary pedestrian or vehicular traffic. The time between stripping to formation level and placement of the capping layer should be minimised.

Any proof rolling of the natural subgrade soils should be performed <u>statically</u> using a smooth roller in order to avoid vibratory disturbance. Initial placement of the capping or starter layer should also be carried out using a static roller for the same reason.

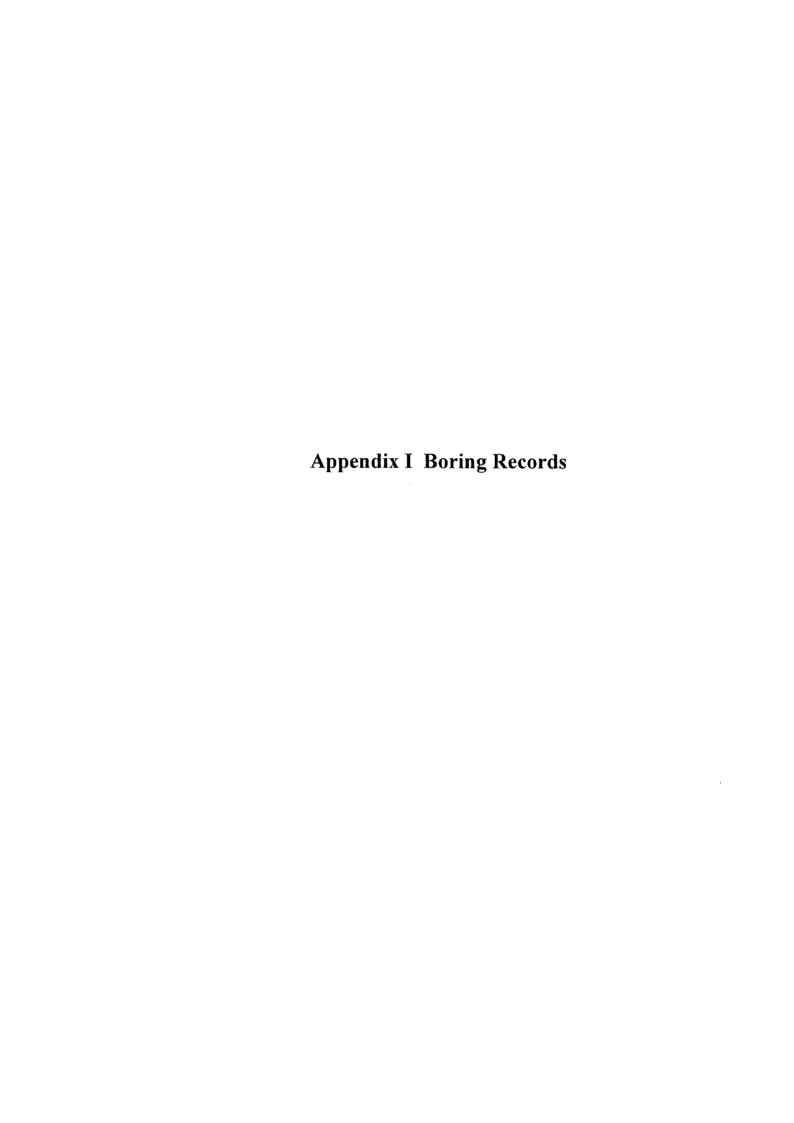
It is important that argillaceous sedimentary rocks (i.e. muddy limestone, calcareous mudstone, shale, etc.) are not used in sub-base, capping or as a starter layer. These have high potential to give rise to degradation (i.e. poor durability and soundness) and slaking and therefore would not be suitable. All granular fills (particularly Series 600 and 800 material) should be thoroughly examined, tested and approved in advance of being used in the pavement construction.

ENVIRONMENTAL

Where elevated contaminant levels occur (generally associated with the FILL deposits over the lower portion of the site) special precautions may be required in off-site disposal of excavated material. It is unlikely that excavated material will be accepted in an INERT facility.

Environmental tests on samples from the boulder clays north of TP 06 indicate that this material can be classed as INERT with no issues arising as to disposal of excavated material either on or off the site.

A waste Characterisation Assessment (WCA) is likely to be required where FILL material is to be disposed of and should be carried out by environmental specialists. This WCA should be submitted to the relevant waste management facility, to confirm suitability for acceptance.


BRE DIGEST 365 TESTS

The test results reflect very low permeability characteristics in the gravelly CLAY soils. This is very typical of the local boulder clays. Clay matrix material is generally unsuited to dispersion of storm or surface water and consideration should be given to the use of a suitable local water course or the Local Authority Drainage System for this development.

FOUNDATION CONCRETE

No special precautions are necessary for protection of below ground concrete.

<u>IGSL/JC</u> July 2023

GP.

BRIDGE & ROAD SITE.

BH LOG

GSL

GEOTECHNICAL BORING RECORD

REPORT NUMBER

24665

BOREHOLE NO. CONTRACT BH01R Monaghan Active Travel - Road & Bridge project SHEET Sheet 1 of 1 CO-ORDINATES **RIG TYPE** Dando 2000 667,653.00 E DATE COMMENCED 17/05/2023 833,742.61 N **BOREHOLE DIAMETER (mm)** 200 GROUND LEVEL (m AOD) 4.60 DATE COMPLETED 17/05/2023 **BOREHOLE DEPTH (m)** CLIENT SPT HAMMER REF. NO. Monaghan Co.Co. **BORED BY** P.Allan **ENGINEER ENERGY RATIO (%)** DBFL PROCESSED BY F.C Samples E Depth (m) Elevation Recovery Ref. Number Sample Type Field Test -egend Depth (Description Depth (m) Results - 0 TOPSOIL · 11/1 56.20 0.10 Soft brown SILT/CLAY with occasional fine gravel ___ N = 50/75 mm AA192926 AA197907 (25, 50) 55.20 1.10 N = 12 (2, 2, 1, 2, 3, 6) AA197908 R 1.00 Firm grey sandy SILT/CLAY with some gravel XO a -2 N = 10AA197909 В φ 2.00 (15, 5, 2, 2, 2, 4) 3 -XC AA197910 В 3.00 N = 14 (1, 2, 3, 2, 2, 7) 53.10 3.20 Very stiff grey very sandy very gravelly SILT xox. 52.30 4.00 Ē4 N = 50/150 mm (9, 16, 30, 20) 800 Dense grey fine to coarse GRAVEL with some cobbles - 5 51.70 4.60 Obstruction End of Borehole at 4.60 m - 6 F 8 f 24/7/23 GDT HARD STRATA BORING/CHISELLING WATER STRIKE DETAILS Casing Time Water Sealed Rise Time From (m) To (m) Comments Comments Strike At (h) Depth To (min) 4.4 4.6 1.5 4.00 4.00 3.00 20 Moderate **GROUNDWATER PROGRESS** Hole Casing Depth to Water **INSTALLATION DETAILS** Date Comments Depth Depth Date | Tip Depth RZ Top | RZ Base Type 17-05-23 End of BH REMARKS CATscanned location and hand dug inspection pit was carried Sample Legend D - Small Disturbed (tub) B - Bulk Disturbed LB - Large Bulk Disturbed UT - Undisturbed 100mm Diamete out . Sample
P - Undisturbed Piston Sample
W - Water Sample - Environmental Sample (Jar + Vial + Tub)

GEOTECHNICAL BORING RECORD

REPORT NUMBER

24665

/I@	337	4												24665	
CON	TRAC	T N	lonaghan	Active Trav	el - Road &	Bridge p	roject					BOREHO	LE NO.	BH02R Sheet 1 of 1	
		ATES LEVEL		7,668.30 E 3,709.23 N 56.07			PE OLE DIAM OLE DEPT		nm)	Dando 20 200 4.40	000	DATE CO		CED 10/05/2023	
CLIE	NT	N	lonaghan			SPT HA	MMER RE	F. NO.		7.70		BORED B	Υ	P.Allan	
ENGI	NEER	D	BFL			ENERG	Y RATIO (9	%) 				PROCESS	SED BY	F.C	_
Depth (m)			C	escription			Legend	Elevation	Depth (m)	Ref. Number	Sample 7	Depth (m)	Recovery	Field Test Results	Standpipe
1	MADE fill)	GROU GROU firm s	JND (Con	nprised of handrised of baseling	rown gravel	ly clay	-X0	55.97 \55.87 54.87	0.10 0.20 1.20	AA192927	В	1.00		N = 33 (2, 6, 8, 10, 6, 9)	
2		92 .6 7	velly CLA	Y			X 	53.87	2.20	AA192928	В	2.00		N = 5 (3, 2, 1, 1, 2, 1)	
3	Dense	grey fi	ne to coa	rse GRAVE	L with some)	0 °2 °	52.57	3.50	AA192929	В	3.00		N = 22 (3, 6, 10, 3, 6, 3)	
	Obstru End of	ıction	ole at 4.40	0 m	,		00000	51.67	4.40	AA192930	В	4.00		N = 50/150 mm (19, 40, 10) N = 50/75 mm (25, 50)	
6															
8															
9															
HAR	DSTR	ATA R	ORING/CI	HISELLING									LA/A	TER STRIKE DET	All C
rom (o (m)	Time	Comments		1	Wate	r Ca		Sealed	Rise		e C	omments	AILS
1.4	52, 93	1.6 4.4	(h) 1 1.5	- Samone			2.00 4.00	2.	epth .00 .00	No No	1.50 2.50	0 20) N	Moderate Moderate	
NSTA	ALLAT	ION DE	TAILS				Date		Hole	Casing	De	pth to Co	GRO	OUNDWATER PRO	GRE
Da				op RZ Bas	е Тур	oe	10-05-		<u>Depth</u> 4.40	Depth Nil	_	alei	d of BH		
REMA	ARKS	CATso out .	canned lo	cation and h	and dug ins	spection p	oit was car	ried	B - Bulk D	le Legeno Disturbed (tub) Disturbed e Bulk Disturbed ironmental Sam	1	r Vial + Tub)	Sample P - Undi	disturbed 100mm Diameter isturbed Piston Sample ter Sample	

Appendix II Rotary Core Logs Photographs

GEOTECHNICAL CORE LOG RECORD

N.	ලිපි	1			•	GEUI	EC1	JIVIC	AL CUI	KE LUG	KECU	טאט			***************************************		2466	55
cc	NTR	ACT	N	1ona	ghan Activ	ve Travel	- Roa	d & Bı	idge project				DRI SHI		LE NO		201R set 1 of :	2
	-ORI			(mO	D)				RIG TYPE			Beretta T	DAT	TE DRI		28/	05/2023 05/2023	,
CL	IENT GINE		N	***************************************	ghan Co.C	Co.			FLUSH INCLINATI CORE DIA	ON (deg) METER (m	m)	Air/Mist -90 78	1	LLED			GSL - Ji D.O'She	
<u> </u>										THE PLANT OF THE		***	150	JOLD		Τ	1.0316	<u> </u>
Downhole Depth (m)	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Spa Lo	og m)	Non-intact Zone	Legend			Descrip	tion			Deoth (m)	Elevation	Standpipe Details	SPT (N Value)
0 1 2 3 4 4 5 6 7 8 9 RE	7.50 9.00		79 66	71 66	.50m				Strong to vifine-grains a black arg slightly we Discontinu moderately	ities are wid gh, planar to y open, calc slight iron o	thickly to the control of the contro	ninly bedde siltite, sand at 9.10-9.3 y spaced, s Apertures at 1-3mm thir	d, light bludy limestor (0m), fresi	e/grey, e with h to very locally clay	7.5	O ATER S		N = 37 (3, 5, 7, 8, 11, 11) N = 63 (7, 10, 18, 21, 11, 13, 16, 17) N = 57 (9, 11, 11, 13, 16, 17)
	TA:	A -uni	~··		11 6					n	Hole	Casing	Denth	to T-			WATER	DETAILS
INS	TAL Date		Tip D	epth	RZ Top	RZ Base		Туг		Date	Depth	Depth	Depth Wate	r C	ommer	nts		
30	-05-2	3	10.5	iO	1.00	10.50		50mn	ı SP									

(C)			GEOT	ECI	HNIC	CAL CO	RE LOG	RECO	RD				2	466	55
CONTRAC	T Mo	naghan Ac	tive Travel	- Roa	d & B	ridge project	t			DRIL SHE	LHOLE	NO		01R	····
CO-ORDIN		mOD)		7 711		RIG TYPE		*****	Beretta T4	DATI	E DRILLE E LOGGE		28/0	et 2 of 3 5/2023 5/2023	,
CLIENT ENGINEER		naghan Co FL).Co.			INCLINAT	ION (deg) AMETER (m	m)	-90 78		LED BY GED BY			SL - Ji O'She	
S Downhole Depth (m) Core Run Depth (m)	S.C.R.%	(St	acture pacing Log mm)	Non-intact Zone	Legend			Descript	ion			Depth (m)	Elevation	Standpipe Details	SPT (N Value)
10.50						End	of Borehole	at 10.50 m				10.50			
13 13 14 15 16 17 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19												The state of the s			
REMARKS Hole cased	from 0.0	0-7.50m			1		Water	Casing	Sealed	Rise	Time	7			DETAILS
vuotu	5,11 5.0	e r.soni					Strike	Depth	At	To	(min)	No	-	strike	recorded
NSTALLA	TION DE	TAILS					Date	Hole	Casing	Depth to Water			UNDW	ATER	DETAILS
Date 30-05-23	Tip Dep 10.50	th RZ Top 1.00	RZ Base 10.50		Typ 50mm		30-05-23	Depth 10.50	Depth 7.50	6,55		ieveis n	ecorded	5 mins a	after end of


OC	3 1	4			GEOT	ECF	INIC	CAL CO	RE LOC	RECC	ORD				2	2466	35
CONT	RAC	r :	Mona	ighan Act	ive Travel	- Roa	d & Bı	idge project					ILLHOLE EET	E NO		02R et 1 of	~·····································
	RDIN. JND L			DD)				RIG TYPE FLUSH			Beretta T	DA	TE DRILL		31/0	5/2023 6/2023	3
CLIE!	IT VEER		Mona DBFL	ghan Co	.Co.			INCLINAT	ION (deg) METER (m	em)	-90 78		ILLED B			SSL - J .O'She	
Downhole Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	(r	octure acing Log nm) 50 500	Non-infact Zone	Legend			Descrip	otion			Depth (m)	Elevation	Standpipe Details	SPT (N Value)
0 1 2 5 6 6	0	O	O		OF BROADER			returns of	CLAY.	NG: No rec	overy, obse			3.00			N = 27 (3. 4, 5, 8, 7, 7) N = 38 (4, 7, 7, 10, 9, 12) N = 47 (7, 8, 13, 11, 13, 10)
7 7.5 8 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	100		10					LIMESTOI Discontinu	NE (argillac iities are clo ocally claysi	eous), sligh iselv space	ess, dark gr itly weatherd d, smooth, p os are subho	ed. elanar, An	ertures i	7.50 8.00			
EMA				7.50~					Weter	Costan	Cool-1	Die -		WA	TER ST		DETAILS
iole C	aseo f	rom C).UU-}	7.50m					Water Strike	Casing Depth	Sealed At	Rise To	Time (min)	 -	mment o wate		recorded
USTA	LLAT	ION F)ETA	.II S					Data	Hole	Casing	Denth t	. I.			VATER	DETAILS
Da	te	~~~~		RZ Top	RZ Base		Тур		Date	Depth	Depth	Depth t Water	Con	ments	·		
)1-06	-23	10.5	50	1.00	10.50	-	50mm	SP									

GEOTECHNICAL CORE LOG RECORD

008	5 3/			OLO:			AL OU!	IVE EOO	IVECO:	ND				2	466	5
CONTR	ACT	Mor	aghan Acti	ve Travel	- Roa	d & Br	idge project				DRI SHE	LLHOLE	NO		02R et 2 of 2	
GROUN			iOD)				RIG TYPE			Beretta T	DAT	E DRILLI E LOGGI		31/0	5/2023 6/2023	
CLIENT	•		aghan Co.	Co.			FLUSH INCLINATI	iON (deg) METER (mn	-1)	Air/Mist -90 78		LLED BY			SL - JI	
							CORE DIA	METER (BIL	1)	70	LUC	GED BY		<u></u>	O'Shea	
Downhole Depth (m)	T.C.R.%	S.C.R.%	(m	cture acing og nm) o 500	Non-intact Zone	Legend			Descript				Depth (m)	Elevation	Standpipe Details	SPT (N Value)
10.50	ļ			-			Strong to v fine-graine slightly we	very strong, t ed, LIMESTC eathered.	hickly to th NE (argilla	inly bedded ceous mud	d, light blu ddy), fresh	to	10.50			
11 12 13 14 15 16 17							Discontinu locally rou moderatel smeared, locally 45°	athered. uities are wid gh, planar to y open, calcii slight iron ox . (continued, of Borehole a	irregular. A te-veined (* ide staining }	Apertures a I-3mm thic	re tight to k), locally	ery locally clav				
REMAR Hole cas		2m () ()	-7 50m					Water	Casing	Sealed	Rise	Time	T			DETAILS
Tiole Cat	ocu IA	лн: U.U U	- <i>1.</i> ↓Ų∏					Strike	Depth	At	To To	(min)	N		r strike	recorded DETAILS
INSTAL								Date	Hole Depth	Casing Depth	Depth t Water	O Com	ments		-MIER	DETAILS
Date 01-06-2		ip Dept 10.50	h RZ Top 1.00	RZ 8ase 10.50		Typ 50mm		01-06-23	10.50	7.50	4.85			recorded	l 5 mins a	ifter end of

RC01R - Box 1 of 1 - 7.50-10.50m

RC02R - Box 1 of 1 - 7.50-10.50m

Appendix III Trial Pit Records Photographs

REPORT NUMBER

24665

\ J (557									Z4	003	
CON	TRACT	Monaghan Active Travel	T					TRIAL P	IT NO.	TP0 Shee	11R et 1 of 1	
LOG	GED BY	I.Reder	CO-ORDINAT		833,6	12.60 E 57.82 N		DATE S	TARTED OMPLET		5/2023 5/2023	
CLIE ENG	NT INEER	Monaghan Co.Co. DBFL/Cora	GROUND LE	VEL (m)	56.08			EXCAVA METHOI		3T T macl	racked hine	•
									Samples		(Et	neter
		Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Type	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
0.0	MADE G gravelly	L ROUND (comprised of brown/grey : clay, angular stones, red brick piece	sandy s, roots)		0.10	55.98		AA205155	8	0.60		
1.0	brown/bi	ROUND (comprised of soft grey/dar own sandy gravelly clay/silt, angular , organic matter)	rk r cobbles and		1.00	55.08						
2.0	Soft, gre ground)	y, slightly sandy SILT/CLAY (possibl	le original	×	2.10	53.98	(Slow)	AA205156	В	1.60		
-	End of T	rial Pit at 2.60m		*	2.60	53.48		AA205157	В	2.50		
4.0												
	ndwater C water flow	onditions at 2.1 m				<u> </u>		<u> </u>			and the second	

Stability TP stable

IGSL TP LOG 24665.GPJ IGSL.GDT 10/5/23

General Remarks
TP done for Active Travel Road project. PBT01R done in location at 0.5m depth

REPORT NUMBER

24665

	TRACT	Monaghan Active Travel						TRIAL P		TP(She	et 1 of 1	
OG	GED BY	I.Reder	CO-ORDINAT		833,70	59.21 E 02.33 N		DATE ST	OMPLET	ED 02/0	5/2023 5/2023	
LIEI NGI	NT NEER	Monaghan Co.Co. DBFL/Cora	GROUND LE	VEL (M)	56.19		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	EXCAVA METHOI	MOITS D	3T T mac	racked hine	
									Samples	S	a)	meter
		Geotechnical Descri	ption	Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Type	Depth	Vane Test (KPa)	Hand Penetrometer
.0	gravelly timber p boulders	IL GROUND (comprised of brow clay, angular stones, red bric ieces, occasional plastic rubbs, concrete pieces) inated at 2.5m due to many brial Pit at 2.50m	k pieces, roots, pish, old steel wires,		2.50	53.69		AA205159		2.00		
.0											:	
abil	ity	Conditions			T-T-VNACPURABAMA						1	
	stable											<u> </u>
enei o do	ral Remar ne for Ac	r ks tive Travel Road project. PB	Γ02R done in location	at 0.6m c	depth							

REPORT NUMBER

24665

CONTRACT TRIAL PIT NO. Monaghan Active Travel TP03R SHEET Sheet 1 of 1 **CO-ORDINATES** 667,627.81 E **DATE STARTED** 03/05/2023 LOGGED BY I.Reder 833,761.65 N DATE COMPLETED 03/05/2023 GROUND LEVEL (m) 56.94 **EXCAVATION** 3T Tracked CLIENT Monaghan Co.Co. METHOD machine **ENGINEER** DBFL/Cora Samples Hand Penetrometer (KPa) Vane Test (KPa) Water Strike Geotechnical Description Elevation Legend Depth (m) Depth Type 0.0 215. VI TOPSOIL 0.15 56.79 MADE GROUND (comprised of brown sandy gravelly clay, many cobbles and boulders, red brick pieces) 0.60 56.34 MADE GROUND (comprised of soft grey/dark grey AA205161 В 0.60 slightly sandy gravelly silty clay, concrete pieces, steel rubbish, many organic pieces, timber pieces, old wires) AA205162 В 1.40 1.70 55.24 Soft to firm, grey, slightly sandy gravelly silty CLAY with medium cobbles and organic matter content. Sand is fine to coarse, gravel is fine to coarse subangular to ~2.0 subrounded, cobbles are subangular to subrounded. AA20516\$ В 2.30 3.00 53.94 3.0 End of Trial Pit at 3.00m 4.0 **Groundwater Conditions** TP dry 10/5/23

Stability

SP.

IGSL TP

TP slightly unstable

General Remarks

TP done for Active Travel Road project. PBT03R done in location at 0.6m depth

REPORT NUMBER

24665

4.9	ರವರ									24	000	
CON	TRACT	Monaghan Active Travel						TRIAL PI	T NO.)4R et 1 of 1	
LOG	GED BY	I.Reder	CO-ORDINA		667,6 833,7	51.63 E 52.38 N		DATE ST			5/2023 5/2023	
CLIE	NT INEER	Monaghan Co.Co. DBFL/Cora	GROUND LI	EVEL (m)	56.52			EXCAVA METHOE		3T T mac	racked hine	
									Sample	s	a)	neter
		Geotechnical Descrip	lion	Legend	Depth (π)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
0.0	MADE (gravelly	IL GROUND (comprised of brown clay, cobbles, red brick pieces	/grey sandy)		0.30	56.22		AA205164	В	0.70		
2.0	fine to co	irm, brown/grey mottled, slightl silty CLAY with medium cobble oarse, gravel is fine to coarse ded, cobbles are small suband ded. (possible original ground)	subangular to Jular to		1.40	55.12		AA205165	В	1.70		
3.0	End of T	rial Pit at 3.00m	····		3.00	53.52		AA205166	В	2.70		
4.0												
Grou TP dr	ndwater C	Conditions				1		<u></u>				•
Stabi TP st	ility able									AUBILE		
Stabi TP st Gene	eral Remai one for Ac	rks tive Travel Road project. PBT	04R done in locatio	n at 0.6m (depth							Managara ang ang ang ang ang ang ang ang ang an

REPORT NUMBER

24665

CO-PRIMATE LOGGED BY LReder CO-ORDINATES SS7,759.27 N An Agost 16 T s Geotechnical Description Geotechnical Description Geotechnical Description Geotechnical Description Film, brown, sandy very gravelly CLAY with high coobles content. Sand is fine to coarse, gravel is fine to coarse gravel is fine to coarse gravel is fine to coarse gravel in the to boulders Film, brown, sandy very gravelly CLAY with high coobles and at 1.9 m due to boulders Groundwater Conditions Groundwater Conditions Groundwater Conditions TP dry Stability Film, brown, sandy very gravelly CLAY with high coobles and a 1.9 m due to boulders Groundwater Conditions TP dry Stability TP dry TRAL PITNO SNEET DATE STARTED GROUND LEVEL (m) 77.02 T	/) :	331./									4	000	
Light Cooperate Cooperat	CON	TRACT	Monaghan Active Travel							IT NO.			
CLIENT Monaghan Co.Co. DBFUCora Geotechnical Description TOPSOIL MADE GROUND (comprised of trown sandy gravelly clay with high cobbies concrete rubble, roots, occasional plastic rubbish) Firm, brown, sandy very gravelly CLAY with high cobbies subcription and subcription of Trained at 19m due to boulders end of Trail Pit at 190m Groundwater Conditions Fir dry Groundwater Conditions Fir dry Groundwater Conditions Groundwater Conditions Fir dry Grou	LOG	GED BY	l.Reder	CO-ORDINAT	ES	667,5 833,7	94.17 E 78.20 N		DATE ST		03/0	5/2023	•
TOPSOIL MADE GROUND (comprised of brown sandy gravelly clay, cobbles, boulders, red brick pieces, concrete rubble, rocks, occasional plastic rubblish) Top of the product				GROUND LE	VEL (m)	57.02					3T T	racked	
TOPSOIL MADE GROUND (comprised of brown sandy gravely clay, cobbles, boulders, red brick pieces, concrete rubble, roots, occasional plastic rubbish) 1.0 Firm, brown, sandy very gravely CLAY with high cobbles content. Sand is fire to cause, gravel is line to coarse subangular to be content. Sand is fire to cause, gravel is line to coarse subangular to subrounded. To the compression of the coarse gravel is line to coarse. Subangular to subrounded. To the coarse gravel is line to coarse. Subangular to subrounded and the coarse subangular to subrounded. To the coarse gravel is line to coarse. Subangular to gravely clay with high cobbles are subangular to gravely subrounded. To the coarse gravel is line to coarse. Subangular to gravely clay with high cobbles are subangular to gravely content. Subrounded and to gravely clay to gravely clay to gravely coarse. Solution of the coarse gravel is line to coarse. Subangular to gravely clay to gravel										Samples		a)	neter
MADE GROUND (comprised of brown sandy gravelly clay, cobbles, boulders, red brick pieces, concrete rubble, roots, occasional plastic rubbish) Firm, brown, sandy very gravelly CLAY with high cobbles content. Sand is fine to coarse, gravel is line to coarse subangular to subrounded, cobbles are subangular to subrounded. The terminated at 1.9m due to boulders and Trial Pit at 1.50m AA205168 B 1.50 AA205168 B 1.50 AA205168 B 1.50 AA205168 B 1.50 Schultzunded To trial Pit at 1.50m AA205168 B 1.50 AA205168 B 1.50 AA205168 B 1.50 AA205168 B 1.50 Schultzunded To trial Pit at 1.50m			Geotechnical Descript	ion	Legend	Depth (π)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KP	Hand Penetrometer
Firm, brown, sandy very gravelly CLAY with high cobbles content. Sand is fine to coarse, gravel is fine to coarse subangular to subrounded, cobbles are subangular to subrounded. TP terminated at 1.9m due to boulders End of Trial Pit at 1.90m 3.0 Groundwater Conditions TP dry Stability TP unstable Seneral Remarks		MADE C	GROUND (comprised of brown bbles, boulders, red brick piece	sandy gravelly es, concrete rubble,	<u></u>	0.15	56.87		AA205167	В	0.50		
Groundwater Conditions TP dry Stability TP unstable General Remarks	^2.0	subangu subroun TP termi	ılar to subrounded, cobbles are ded inated at 1.9m due to boulders	e subangular to	\$	1			AA205168	В	1.50		
Groundwater Conditions FP dry Stability FP unstable General Remarks	3.0												
FP dry Stability TP unstable General Remarks	4.0												
TP unstable General Remarks			Conditions							······································			
General Remarks TP done for Active Travel Road project. PBT05R done in location at 0.5m depth	Stabi TP ur	lity Istable											***************************************
	Gene TP do	ral Remar one for Ac	ks tive Travel Road project. PBT0	05R done in location	at 0.5m	depth						***************************************	
	····												

REPORT NUMBER

24665

CONTRACT Monaghan Active Travel TRIAL PIT NO. TP06R SHEET Sheet 1 of 1 **CO-ORDINATES** 667,471.46 E **DATE STARTED** 03/05/2023 LOGGED BY I.Reder 833,759.97 N DATE COMPLETED 03/05/2023 GROUND LEVEL (m) 72.31 **EXCAVATION** 3T Tracked CLIENT Monaghan Co.Co. **METHOD** machine **ENGINEER** DBFL/Cora Hand Penetrometer (KPa) Samples Vane Test (KPa) Nater Strike Geotechnical Description Elevation Legend Depth Depth (m) Type 0.0 TOPSOIL 11/2 3/1/ 0 0 0 0.20 72.11 Soft, brown, slightly sandy slightly gravelly CLAY with low cobbles content. Sand is fine to coarse, gravel is fine to coarse subangular to subrounded, cobbles are small <u>-À</u> 0.50 71.81 subangular to subrounded. ⊗. Soft to firm, greyish brown to brown, slightly sandy very AA20517 В 0.70 gravelly slightly silty CLAY with high cobbles and boulders content. Sand is fine to coarse, gravel is fine to coarse subangular to angular, cobbles and boulders are subangular to angular. AA205172 В 1.50 1.70 70.61 TP terminated at 1.7m due to boulders or rock End of Trial Pit at 1.70m 2.0 3.0 **Groundwater Conditions** Seepage at 1.1m, slow water flow at 1.7m

Stability TP stable

24665.GPJ

8 4

General Remarks TP done for Active Travel Road project. PBT06R done in location at 0.6m depth

REPORT NUMBER

24665

٠. الله											000	
CON	TRACT	Monaghan Active Travel						TRIAL P	IT NO.	TP()7 R et 1 of 1	
LOG	GED BY	l.Reder	CO-ORDIN	ATES	667,4 833,8	98.03 E 10.31 N		DATE ST		03/0	5/2023 5/2023	
CLIE ENG	NT NEER	Monaghan Co.Co. DBFL/Cora	GROUND I	LEVEL (m)	72.18			EXCAVA METHOD	TION		racked	
		The state of the s		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					Sample	s	_	eter
		Geotechnical Desc	ription	Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KPa)	Hand Penetrometer
0.0	TOPSO	IL.		31/2 1/1/			 			1		
	Soft to f	irm, brown, slightly sandy Cl	AY with low gravel	0	0.20	71.98						
	fine to c	r roots content. Sand is fine oarse subangular to subrou	nded.		0.50	71.68						
	Firm to : CLAY w	stiff, brownish grey, slightly s ith high cobbles and boulde	sandy gravelly silty rs content. Sand is									
	fine to c subroun	oarse, gravel is fine to coars ided, cobbles and boulders :	se subanoular to	# Z					_			
1.0	angular.	•		60 ×				AA205169	В	0.90		
				-2								<u>.</u>
				- 12 ×								
				* - C								
2.0				×4 .				AA205170	В	1.90		
				0	2.30	69.88						
	TP term End of T	inated at 2.3m due to many rial Pit at 2.30m	boulders		2.30	05.00						
3.0												
4.0												
- Prou	ndwater (Conditions					l		······································			
ΓP dr		John Millions										
Stabi												······································
TP ur	stable											
iene P do	ral Remai one for Ac	r ks tive Travel Road project. PE	3T07R done in location	on at 0.6m	depth							
	· · · · · · · · · · · · · · · · · · ·	***************************************					······································					

REPORT NUMBER

24665

	227												
CON	TRACT	Monaghan Active Travel							TRIAL P	IT NO.	TP(98 R et 1 of 1	
LOG	GED BY	l.Reder		-ORDINAT		833,8	09.66 E 91.93 N		DATE S		04/0	5/2023 5/2023	
CLIE	INT INEER	Monaghan Co.Co. DBFL/Cora	GF	ROUND LE	VEL (m)	73.83			EXCAVA METHOI	NOITA O	3T T mac	racked hine	
										Samples	3	(g	петег
		Geotechnical Descri	ription		regend_	Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
0.0	TOPSO		-t-latl	- 01 43/	7.74.7 37.77	0.25	73.58						
-	with low coarse, subrour	firm, brown, slightly sandy slig cobbles and hair roots conte gravel is fine to coarse subanded, cobbles are subangular	ent. Sand is angular to ir to subround	fine to ded.		0.85	72.98		AA205180	В	0.70		
- 1.0 - - -	slightly: Sand is	stiff, brownish grey, slightly s silty CLAY with high cobbles fine to coarse, gravel is fine bunded, cobbles and boulders	and boulder to coarse su	s content. Ibangular		0.65	72.90						
- - - - - 2.0	TP term End of 1	inated at 1.8m due to boulde Trial Pit at 1.80m	ers or rock	***************************************		1.80	72.03	(Seepage)	AA205181	В	1.70		es designativos de remares de competente de
• - -													
- - -													
3.0													
- - -													
- - - 4.0											:		
· ·											- Company of the Comp		
- - -													
Grou	indwater (page flow	Conditions at 1.8m											<u> </u>
Stab TP s	ility table												
	eral Rema	rks ctive Travel Road project. PB	3T08R done	in location	at 0.6m	depth							

REPORT NUMBER

24665

J.S	227									- •		
CON	TRACT	Monaghan Active Travel						TRIAL P	IT NO.	TP0	9 R et 1 of 1	
LOG	GED BY	I.Reder	CO-ORDINAT		834,0	58.08 E 09.19 N		DATE S		04/0	5/2023 5/2023	
CLIE	NT INEER	Monaghan Co.Co. DBFL/Cora	GROUND LE	VEL (m)	82.75	•		EXCAVA METHOI		3T T maci	racked nine	
									Samples	3	<u>a</u>	пеtег
		Geotechnical Description	on	Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
0.0	TOPSO	OIL.		77 77	1							
	Soft, browith low	own, slightly sandy slightly slight cobbles and hair roots content.	ly gravelly CLAY	<u>a</u> 0	0.25	82.50	1	-				
1.0	coarse, subrour Firm to high col gravel is	gravel is fine to coarse subanguaded, cobbles are subangular to stiff, brown, slightly sandy very gobbles and boulders content. San is fine to coarse subangular to suand boulders are subangular to	lar to subrounded. ravelly CLAY with d is fine to coarse, brounded,		0.50	82.25	(Seepage)	AA205182	В	0.60		
		ninated at 1.5m due to boulders	DOM: NO. 12. 12. 12. 12. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	0 5	1.50	81.25		AA205183	В	1.40		
•	End of	Trial Pit at 1.50m										
2.0								:				
				:								
3.0												
4.0												
										Landan		
Grou	ndwater (Conditions					<u></u>					<u> </u>
		ge flow at 0.5m										
Stab TP st			······································		***************************************					***************************************		
Gene TP d	eral Rema	urks ctive Travel Road project. PBT0	9R done in location	at 0.6m	depth		······································					
		· · · · · · · · · · · · · · · · · · ·										

Site: Monaghan Active Travel Project Engineer: DBFL/CORA

TRIAL PIT PHOTOGRAPHY RECORD TP 01R

Site: Monaghan Active Travel Project Engineer: DBFL/CORA

TRIAL PIT PHOTOGRAPHY RECORD TP 02R

Site: Monaghan Active Travel Project Engineer: DBFL/CORA

TRIAL PIT PHOTOGRAPHY RECORD TP 03R

Site: Monaghan Active Travel Project Engineer: DBFL/CORA

TRIAL PIT PHOTOGRAPHY RECORD TP 04R

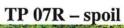
TP 04R – spoil

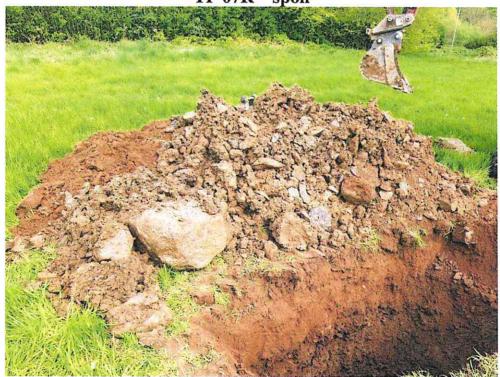
Site: Monaghan Active Travel Project Engineer: DBFL/CORA

TRIAL PIT PHOTOGRAPHY RECORD TP 05R

Site: Monaghan Active Travel Project Engineer: DBFL/CORA

TRIAL PIT PHOTOGRAPHY RECORD TP 06R




Site: Monaghan Active Travel Project Engineer: DBFL/CORA

TRIAL PIT PHOTOGRAPHY RECORD TP 07R

Site: Monaghan Active Travel Project Engineer: DBFL/CORA

TRIAL PIT PHOTOGRAPHY RECORD TP 08R

Site: Monaghan Active Travel Project Engineer: DBFL/CORA

TRIAL PIT PHOTOGRAPHY RECORD TP 09R

Soakaway Design f -value from field tests IGS Contract: Monaghan, Active Travel 24665 Test No. SA01R Engineer DBFL Date: 02/05/2023 Summary of ground conditions from to Description Ground water 0.00 0.10 TOPSOIL 0.10 0.80 MADE GROUND (brown/grey sandy gravelly clay, cobbles, occ. plastic rubbish) 0.80 1.70 Firm to stiff, yellowish brown, slightly sandy slightly gravelly CLAY with low DRY cobbles content (possible original ground) Location: E: 667646.368; N:833692.439; G.L. 55.627mOD Notes: SA01R done for Active Travel Road project Field Data Field Test Depth to Elapsed Depth of Pit (D) 1.70 m Water Time Width of Pit (B) 0.50 m (m) (min) Length of Pit (L) 1.70 0.530 0.00 Initial depth to Water = 0.53 m 0.530 1.00 Final depth to water = 0.530 m 0.530 2.00 Elapsed time (mins)= 60.00 0.530 3.00 0.530 4.00 Top of permeable soil m 0.530 5.00 Base of permeable soil 6.00 0.530 0.530 7.00 No Water Movement 0.530 8.00 0.530 9.00 0.530 10.00 Base area= 0.85 m2 0.530 12.00 *Av. side area of permeable stratum over test period 5.148 m2 0.530 14.00 Total Exposed area = 5.998 m2 0.530 16.00 0.530 18.00 0.530 20.00 Infiltration rate (f) = Volume of water used/unit exposed area / unit time 0.530 25.00 f= 0.530 30.00 0 m/min or 0 m/sec 0.530 40.00 0.530 50.00 0.530 60.00 Depth of water vs Elapsed Time (mins) 70.00 60.00 Time(mins) 50.00 40.00 30.00 20.00 10.00 0.00 0.000 0.100 0.200 0.300 0.400 0.500 0.600 Depth to Water (m)

f -value from field tests Soakaway Design **IGS** Contract: Monaghan, Active Travel 24665 Test No. SA02R **Engineer DBFL** Date: 03/05/2023 Summary of ground conditions to Description Ground water 0.00 0.10 TOPSOIL 0.10 1.30 MADE GROUND (brown/grey sandy gravelly clay, angular cobbles and boulders, roots, occasional plastic rubbish) DRY 1.30 Obstruction - boulders Location: E:667701.127; N:833726.306; G.L. 56.054mOD Notes: SA02R done for Active Travel Road project Field Data Field Test Depth to Elapsed Depth of Pit (D) 1.30 m Water Time Width of Pit (B) 0.70 m (m) (min) Length of Pit (L) 1.50 m 0.550 0.00 Initial depth to Water = 0.55 m 0.550 1.00 Final depth to water = 0.560 m 0.550 2.00 Elapsed time (mins)= 60.00 0.550 3.00 0.560 4.00 Top of permeable soil m 0.560 5.00 Base of permeable soil 0.560 6.00 Water Movement stoped at 0.56m 0.560 7.00 0.560 8.00 0.560 9.00 0.560 10.00 Base area= 1.05 m2 0.560 12.00 *Av. side area of permeable stratum over test period 3.278 m2 0.560 14.00 Total Exposed area = 4.328 m2 0.560 16.00 0.560 18.00 0.560 20.00 Infiltration rate (f) = Volume of water used/unit exposed area / unit time 25.00 0.560 30.00 f= 4E-05 m/min 0.560 6.73906E-07 m/sec or 0.560 40.00 0.560 50.00 0.560 60.00 Depth of water vs Elapsed Time (mins) 70.00 60.00 Time(mins) 50.00 40.00 30.00 20.00 10.00 0.00 0.548 0.550 0.552 0.554 0.556 0.558 0.560 0.562

Depth to Water (m)

f -value from field tests Soakaway Design IGS Contract: Monaghan, Active Travel 24665 Test No. SA03R Engineer DBFL Date: 03/05/2023 Summary of ground conditions from Description to Ground water 0.00 0.15 TOPSOIL 0.15 1.70 MADE GROUND (brown sandy gravelly clay, angular cobbles, boulders, red brick pieces, roots) DRY Location: E:667632.653; N:833757.907; G.L. 57.157mOD Notes: SA03R done for Active Travel Road project Field Data Field Test Depth to Elapsed Depth of Pit (D) 1.70 m Water Time Width of Pit (B) 0.50 m (m) (min) Length of Pit (L) 1.50 m 0.530 0.00 Initial depth to Water = 0.53 m 0.530 1.00 Final depth to water = 0.530 m 0.530 2.00 Elapsed time (mins)= 60.00 0.530 3.00 0.530 4.00 Top of permeable soil m 0.530 5.00 Base of permeable soil 0.530 6.00 No Water Movement 0.530 7.00 8.00 0.530 0.530 9.00 0.530 10.00 Base area= 0.75 m2 0.530 12.00 *Av. side area of permeable stratum over test period 4.68 m2 0.530 14.00 Total Exposed area = 5.43 m2 0.530 16.00 0.530 18.00 Volume of water used/unit exposed area / unit time 0.530 20.00 Infiltration rate (f) = 25.00 0.530 0 m/min f= 0.530 30.00 or 0 m/sec 0.530 40.00 0.530 50.00 0.530 60.00 Depth of water vs Elapsed Time (mins) 70.00 60.00 Time(mins) 50.00 40.00 30.00 20.00 10.00 0.00 0.000 0.100 0.200 0.300 0.400 0.500 0.600 Depth to Water (m)

f -value from field tests Soakaway Design IGS Contract: Monaghan, Active Travel 24665 Test No. SA04R **Engineer DBFL** Date: 03/05/2023 Summary of ground conditions Description Ground water 0.00 0.10 TOPSOIL 0.10 1.50 MADE GROUND (dark brown/brown sandy gravelly clay, angular cobbles, boulders red brick pieces, roots) DRY 1.50 1.60 Firm, brown, slightly sandy slightly gravelly CLAY with many cobbles 1.60 Obstruction - boulders Location: E:667598.995; N:833793.538; G.L. 56.986mOD Notes: SA04R done for Active Travel Road project Field Data Field Test Depth to Elapsed 1.60 Depth of Pit (D) m Water Time Width of Pit (B) 0.70 m (m) (min) Length of Pit (L) 1.60 m 0.630 0.00 Initial depth to Water = 0.63 m 0.650 1.00 Final depth to water = 0.900 m 0.670 2.00 Elapsed time (mins)= 60.00 0.680 3.00 0.690 4.00 Top of permeable soil m 0.695 5.00 Base of permeable soil 0.700 6.00 0.705 7.00 0.710 8.00 0.720 9.00 0.730 10.00 Base area= 1.12 m2 0.740 12.00 *Av. side area of permeable stratum over test period 3.841 m2 0.750 14.00 Total Exposed area = 4.961 m2 0.760 16.00 0.770 18.00 0.790 20.00 Infiltration rate (f) = Volume of water used/unit exposed area / unit time 0.810 25.00 0.830 f= 0.00102 m/min 30.00 1.69321E-05 m/sec or 40.00 0.860 0.880 50.00 0.900 60.00 Depth of water vs Elapsed Time (mins) 70.00 60.00 Time(mins) 50.00 40.00 30.00 20.00 10.00 0.00 0.000 0.200 0.400 0.600 0.800 1.000

Depth to Water (m)

f -value from field tests Soakaway Design IGS Contract: Monaghan, Active Travel 24665 Test No. SA05R **Engineer DBFL** Date: 03/05/2023 Summary of ground conditions from to Description Ground water 0.00 0.20 TOPSOIL 0.20 1.10 Soft to firm, brown, sandy gravelly silty CLAY with low cobbles content Slow water at 1.10 1,40 Firm, brown, slightly sandy gravelly silty CLAY with high angular cobbles content 1.3m 1,40 Obstruction - boulders or rock Location: E:667509.452; N:833780.041; G.L. 69.077mOD Notes: SA05R done for Active Travel Road project Field Data Field Test Depth to Elapsed Depth of Pit (D) 1.40 m Water Time Width of Pit (B) 0.50 m (m) (min) Length of Pit (L) 1.50 0.670 0.00 Initial depth to Water = 0.67 lm 0.680 1.00 Final depth to water = 0.750 m 0.680 2.00 Elapsed time (mins)= 60.00 0.680 3.00 0.680 4.00 Top of permeable soil m 0.680 5.00 Base of permeable soil m 0.680 6.00 0.690 7.00 0.690 8.00 0.690 9.00 0.700 10.00 Base area= 0.75 m2 0.700 12.00 *Av. side area of permeable stratum over test period 2.76 m2 0.710 14.00 Total Exposed area = 3.51 m2 0.710 16.00 0.710 18.00 0.720 20.00 Infiltration rate (f) = Volume of water used/unit exposed area / unit time 0.720 25.00 30.00 0.720 f= 0.00028 m/min 4.74834E-06 m/sec or 0.730 40.00 0.740 50.00 0.750 60.00 Depth of water vs Elapsed Time (mins) 70.00 60.00 Time(mins) 50.00 40.00 30.00 20.00 \$ 10.00 0.00 0.680 0.700 0.660 0.720 0.740 0.760

Depth to Water (m)

Soakaway Design f -value from field tests IGS Contract: Monaghan, Active Travel 24665 Test No. SA06R Engineer DBFL Date: 04/05/2023 Summary of ground conditions from to Description Ground water TOPSOIL 0.00 0.20 0.20 0.90 Soft to firm, brown, slightly sandy slightly gravelly CLAY with low cobbles conten 0.90 1.60 Firm to stiff, brown, slightly sandy gravelly CLAY with high angular cobbles conte DRY Location: E:667522.727; N:833925.614; G.L. 73.67mOD Notes: SA06R done for Active Travel Road project Field Data Field Test Depth to Elapsed Depth of Pit (D) 1.60 m Water Time Width of Pit (B) 0.50 m (m) (min) Length of Pit (L) 2.00 m 0.730 0.00 Initial depth to Water = 0.73 m 0.730 1.00 Final depth to water = 0.730 m 0.730 2.00 Elapsed time (mins)= 60.00 3.00 0.730 0.730 4.00 Top of permeable soil m 0.730 5.00 Base of permeable soil 0.730 6.00 No Water Movement 0.730 7.00 0.730 8.00 0.730 9.00 0.730 10.00 Base area= 1 m2 0.730 12.00 *Av. side area of permeable stratum over test perio 4.35 m2 0.730 14.00 Total Exposed area = 5.35 m2 0.730 16.00 0.730 18.00 0.730 20.00 Infiltration rate (f) = Volume of water used/unit exposed area / unit time 0.730 25.00 f= 0.730 30.00 0 m/min or 0 m/sec 0.730 40.00 0.730 50.00 0.730 60.00 Depth of water vs Elapsed Time (mins) 70.00 60.00 Time(mins) 50.00 40.00 30.00 20.00 10.00 0.00 0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 Depth to Water (m)

Site: Monaghan Active Travel Project Engineer: DBFL/CORA

TRIAL PIT PHOTOGRAPHY RECORD SA 01R

Site: Monaghan Active Travel Project Engineer: DBFL/CORA

TRIAL PIT PHOTOGRAPHY RECORD SA 02R



Site: Monaghan Active Travel Project Engineer: DBFL/CORA

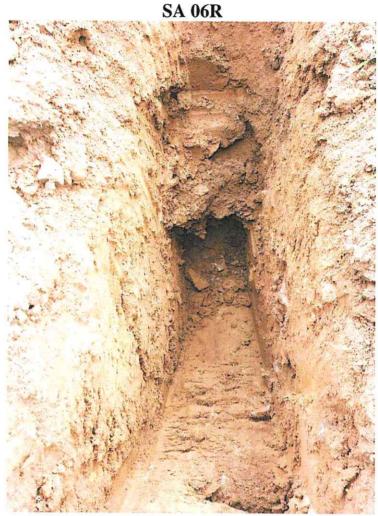
TRIAL PIT PHOTOGRAPHY RECORD **SA 03R**

Site: Monaghan Active Travel Project Engineer: DBFL/CORA

TRIAL PIT PHOTOGRAPHY RECORD SA 04R

Site: Monaghan Active Travel Project Engineer: DBFL/CORA

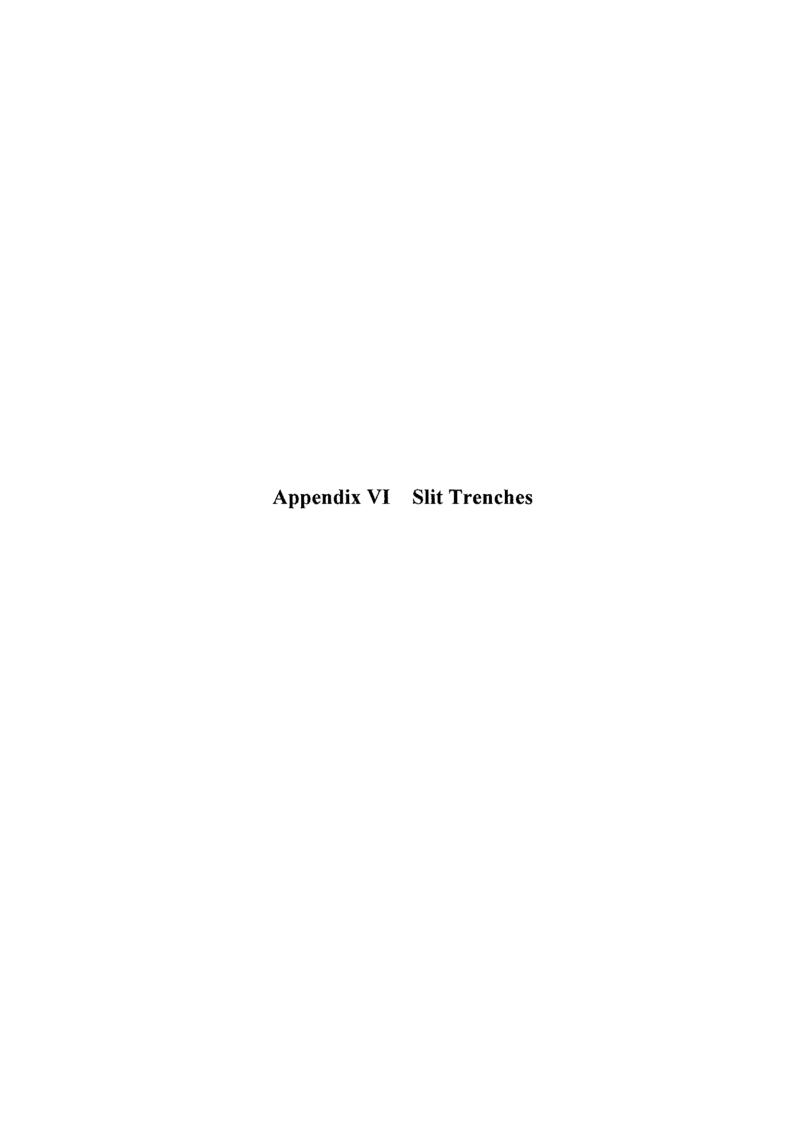
TRIAL PIT PHOTOGRAPHY RECORD SA 05R

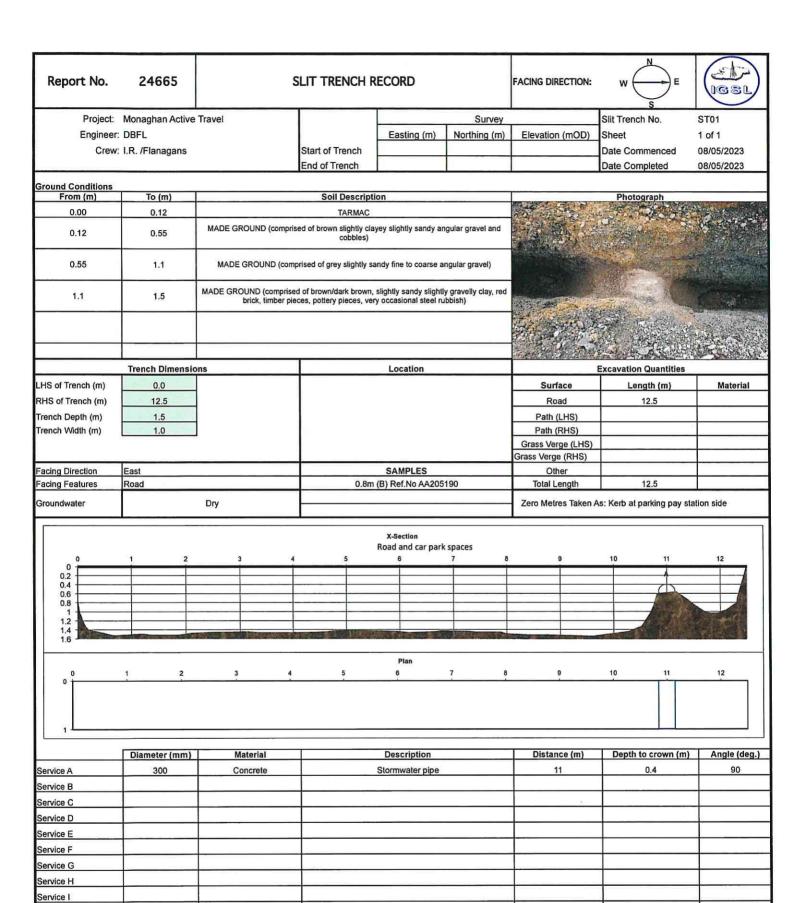


Site: Monaghan Active Travel Project Engineer: DBFL/CORA

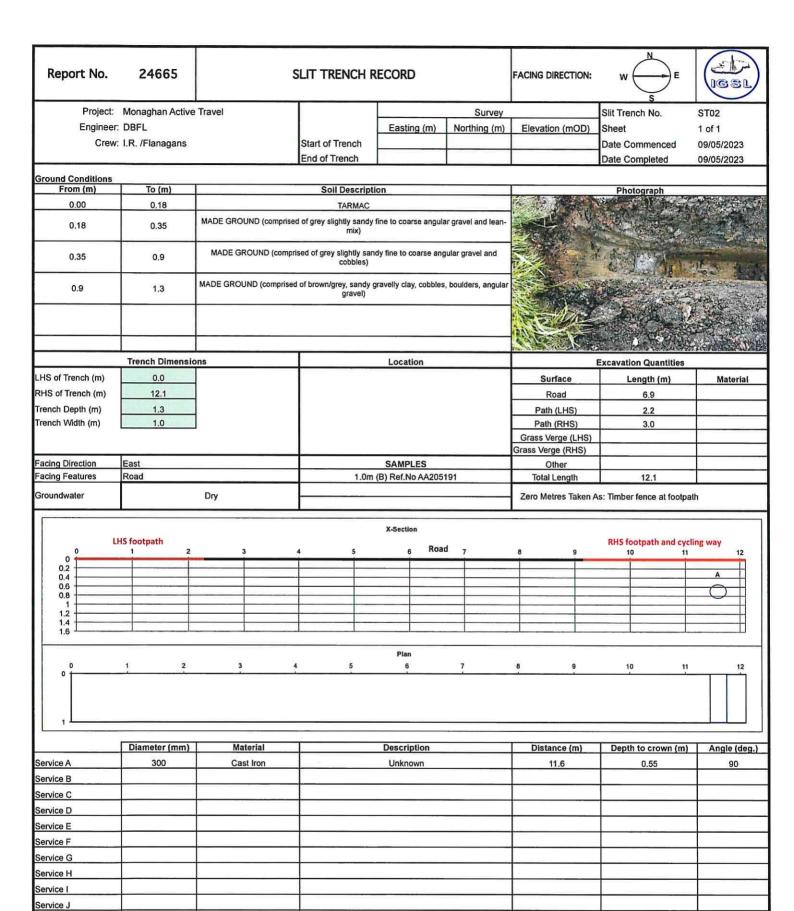
TRIAL PIT PHOTOGRAPHY RECORD SA 06R

Page 2 of 2

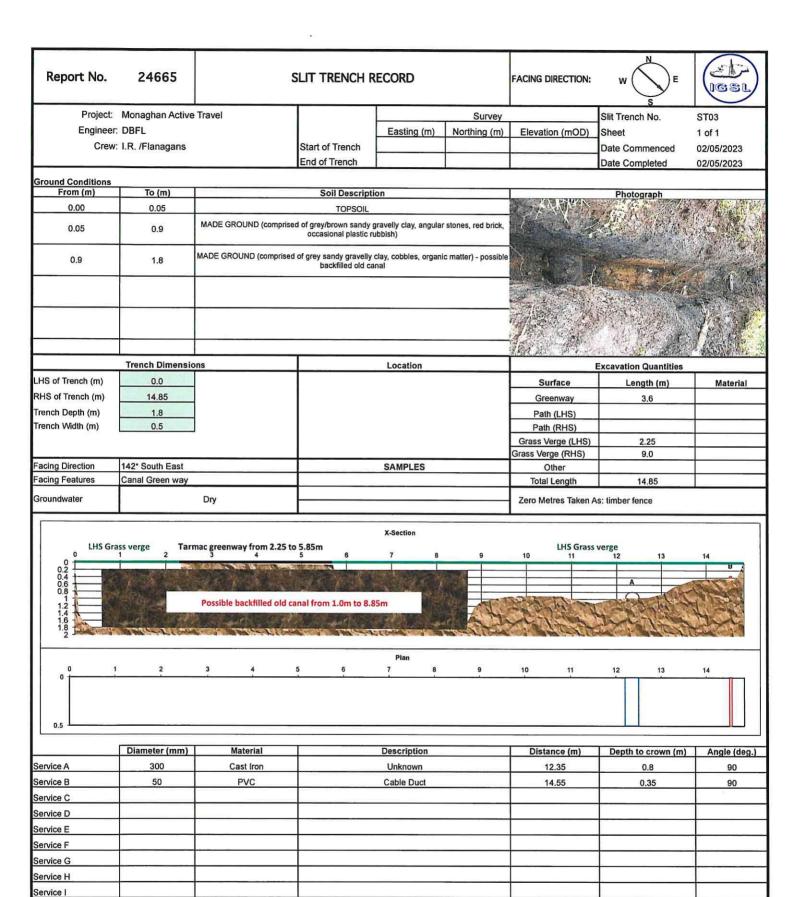

Page 2 of 2

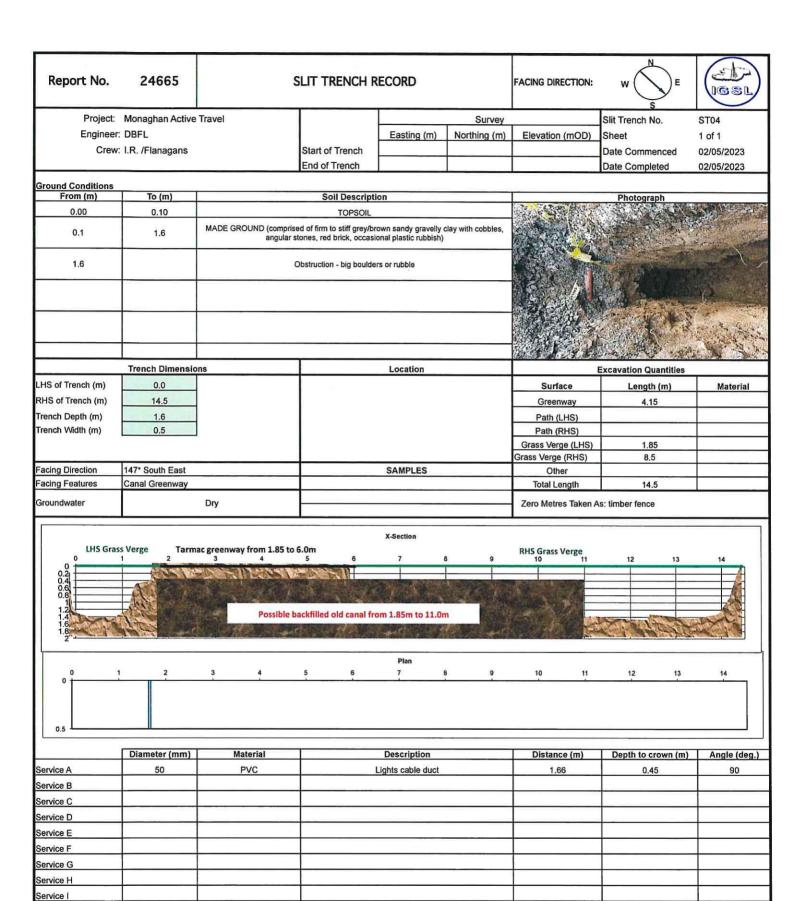

Page 2 of 2

Page 1 of 2


Page 2 of 2

Page 2 of 2




Service J Service K Service L Service M

Service K Service L Service M

Service J Service K Service L Service M

Service J Service K Service L Service M

Appendix VII Vane Shear Tests

- a. Vane Shear Test Data
 - b. Window Sample Logs
 - c. Dynamic Probe Logs

Project No. 24665 Project Title: Monaghan Active Travel - road and bridge project Gloud Borehole No. SV01 (WS01) Vane Type Vane Length (mm) Vane Width (mm) Stoade Geonor H-10 Vane Width (mm) Stoade Gauge Reading Strength* (kPa) O.5 (Attempt 2) Cauge Reading Caround resistance too 1.0 (Attempt 3) Caround resistance too 1.5 (Attempt 3) Caround resistance too)
Geonor H-10 130 65 0.1 deg/sec (1 rev/sec at rotary ha Cauge Reading Peak Vane Stre	Easting (m) Northing (m) Ground Level (mOD)	667616.276 833670.874 55.657
Gauge Reading Stre	ary handle)	
Gauge Reading Stre	Vane Shear Strength (kPa)	Residual Shear Strength (kPa)
	Time to Reach Peak Shear (sec)	Gauge Reading Residual Shear Strength*
	istance too high o	
	Ground resistance too high or too cobbly to extract vane from housing	ne from housing
	Ground resistance too high or too cobbly to extract vane from housing	ne from housing
,		
shear strength calculated using instrument's calibration chart	hart	

Vane Shear Strength from Field Measurement	h from Field Measu	rement			TESS.
Project No. Project Title: Client: Borehole No.	24665 Monaghan Active Travel Monaghan Co. Co. SV02 (WS02)	Active Travel - road and bridge project Co. Co. 02)	Easting (m) Northing (m) Ground Level (mOD)	667636.425 833686.243 55.518	
Vane Type Vane Length (mm) Vane Width (mm) Rotational Speed of Vane	Geonor H-10 130 65 0.1 deg/sec (1 rev/sec at	0 (1 rev/sec at rotary handle)			
Depth (m) 0.5 (Attempt 1) 1.5 (Attempt 3) 2.5 (Attempt 3)	Gauge Reading	Peak Vane Shear Time Strength* (kPa) Ground resistance too Ground resistance too	Vane Shear Vane Shear Vane Shear Vane Shear (sec) Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance to be a fine from hou	Gauge Reading act vane from housing act vane from housing act vane from housing	Reading (kPa) m housing m housing m housing
* shear strength calculated using instrument's calibration chart	Ising instrument's calibratic	on chart			

andle) andle) andle) Shear Strength (kPa) Shear Strength (kPa) Ground Level (mOD) Shear Shear (Vane Shear Shear Strength (kPa) Ground Level (mOD) Shear (Sec) Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing to too cobbly too cobbly to extract vane from housing to too cobbly to extract vane from hou	Vane Shear Strength from		Field Measurement			TSD!
Shear Strength (kPa) Shear Strength (kPa) (Vane Shear Time to Reach Peak Shear (Gauge Reading Ingth* (kPa) Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing	Project No. Project Title: Client: Borehole No.	24665 Monaghan Active Trav Monaghan Co. Co. SV03 (WS03)	T. Name of the last of the las	Easting (m) Northing (m) Ground Level (mOD)	667660.367 833703.834 55.87	
Shear Strength (kPa) Vane Shear Time to Reach Peak Shear (sec) Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing	Vane Type Vane Length (mm) Vane Width (mm) Rotational Speed of Vane	Geonor H-10 130 65 0.1 deg/sec (1 rev/sec	at rotary handle)			
Avane Shear Time to Reach Peak Shear (Sec) Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly to extract vane from housing Ground resistance too high or too cobbly too cobbly to extract vane from housing Ground resistance to be a fine from housing Ground resistance to be a fine from housing Ground resista	Depth (m)		Peak Vane Shear Strength	(kPa)	Residual Shea	ir Strength (kPa)
		Gauge Reading	Peak Vane Shear Strength* (kPa)	Time to Reach Peak Shear (sec)	Gauge Reading	Residual Shear Strength* (kPa)
	0.5 (Attempt 1) 1.5 (Attempt 2)		Ground resistance	too high or too cobbly to extra	act vane from housing	
	2.5 (Attempt 3)		Ground resistance	too high or too cobbly to extr	act vane from housing	
I shear strength calculated using instrument's calibration chart	* shear strength calculated u	 sing instrument's calibr	ation chart			

-		*
7 Ja	- 27."	\\ \
Second .	j.	part.
\ 0.		
	٠,٠	/·

WINDOW SAMPLE RECORD

REPORT NUMBER

2/665

/30	ಶೆಟ್ಟಿ									24	000	
COV	TRACT	Monaghan Active Travel - Road &	Bridge pro	ject		·····		PROBE	NO.		(SV01))
CO-	ORDINATE	ES .						SHEET DATE D	RILLEC	Sheet 1 04/05/2		
GRO	DUND LEV	EL (mOD)						DATE L				
CLIE	INEER	Monaghan Co.Co. DBFL			·			SAMPL LOGGE		C.Ka I.Red	ıvanagh der	
Depth (m)		Geotechnical Description		Legend	Depth (π)	Elevation	Water Strike	Depth of Sample Run (m)	Recovery (%)	Blowcount	Vane Test (KPa)	Hand Penetrometer (KPa)
1.0	sandy gr organic	ROUND (comprised of brown/grey ravelly clay, cobbles, angular stones	revsandy	<u> </u>	1.10			0.00-1.00	80	114 blows		
3.0	Obstruct Final De	tion - possible boulders pth 2.00m			2.00			1.00-2.00	90	184 blows		
4.0												
Gene WS o	eral Remar done for se	rks et of Shear Vane tests - for all detail	s see SV0	l log								
Insta	llations											

WINDOW SAMPLE RECORD

REPORT NUMBER

24665

	327		***************************************							
	TRACT Monaghan Active Travel - Road & E	Bridge project				PROBE SHEET		WS02 Sheet	2(SV02) 1 of 1)
	ORDINATES UND LEVEL (mOD)					DATE D				
CLIE	NT Monaghan Co.Co. NEER DBFL			<u>.</u>		SAMPL LOGGE		C.Ka I.Red	vanagh der	
Depth (m)	Geotechnical Description	Legend	Depth (m)	Elevation	Water Strike	Depth of Sample Run (m)	Recovery (%)	Blowcount	Vane Test (KPa)	Hand Penetrometer (KPa)
0.0	TOPSOIL MADE GROUND (comprised of brown/grey mandy gravelly clay, cobbles, angular stones, organic matter)	roots,	0.10			0.00-1.00	100	59 blows		
1.0	Firm, grey/dark grey, slightly sandy gravelly SILT/CLAY with some subangular to subrouncobbles and organic matter (possible fill)	ded XG	4 1.00							
2.0	Firm to stiff, grey sandy very gravelly SILT with some cobbels content		1 FK 0 1 2.50			1.00-2.00	100	62 blows		
3.0	Final Depth 3.00m	* x x x x x x x x x x x x x x x x x x x	3.00			2.00-3.00	90	199 blows		
4.0										
5.0										
Gene WS d	ral Remarks lone for set of Shear Vane tests - for all details	see SV02 log		1			<u> </u>		<u> </u>	
Instal	lations			<i></i>						

WINDOW SAMPLE RECORD

REPORT NUMBER

24665

\ U \	۱۰۰۰											
	TRACT	Monaghan Active Travel - Road &	Bridge pro	oject				PROBE SHEET		WS03 Sheet	(SV03)	
GRO		ES /EL (mOD)						DATE I				
CLIE	NT INEER	Monaghan Co.Co. DBFL			,		1	SAMPI LOGGI		C.Ka I.Red	vanagh der	
Depth (m)		Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Depth of Sample Run (m)	Recovery (%)	Blowcount	Vane Test (KPa)	Hand Penetrometer (KPa)
0.0	sandy g organic	GROUND (comprised of brown/grey gravelly clay, cobbles, angular stones matter)	, roots,		0.10			0.00-1.00	100	84 blows		
2.0	Firm to	ey/dark grey, slightly sandy gravelly LAY with some subangular to subrous and organic matter (possible fill) stiff, grey sandy very gravelly SILT we		× × × × ×	1.30 2.00			1.00-2.00	100	126 blows		
3.0	Final Do	epth 3.00m		**************************************	3.00			2.00-3.00	100	177 blows		
4.0												
5.0												
Gene WS o	eral Rema done for s	urks set of Shear Vane tests - for all detail	s see SV0	3 log				<u> </u>	1		I	
Insta	llations		·	***************************************	***************************************				***************************************			

DYNAMIC PROBE RECORD

REPORT NUMBER

Je	51	VAIVIIC PRODE R	ŒCUI	(D					24665
	RACT Monaghan Active Travel - Road	& Bridge project				PRO SHE	BE NO.		SV01 (DP01) Sheet 1 of 1
	RDINATES 667,615.64 E 833,674.91 N JND LEVEL (mOD) IT Monaghan Co.Co.	HAMMER MASS (kg) INCREMENT SIZE (m		50 100		DAT	E DRILLE E LOGGE		04/05/2023 04/05/2023
ENGI	•	FALL HEIGHT (mm)		500		PRO	BE TYPE	E	DPH
Depth (m)	Geotechnical Descript	ion	Legend	Depth (m)	Elevation (mOD)	Water	Depth (m)	Probe Readings (Blows/Increment)	Graphic Probe Record
1.0							0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.10 1.20 1.30 1.40 1.50 1.60 1.70 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.10 3.30 3.30 3.50		
4.0	End of Probe at 3.90 m	MACLE STATE OF THE					3.60 3.70 3.80	18 25 25 25	
GROU	INDWATER OBSERVATIONS		<u> </u>				771		
GROU	RKS								

DYNAMIC PROBE RECORD

REPORT NUMBER

Tegend	Depth (m) Depth (m)		DATI	BE NO. ET E DRILLE E LOGGE BE TYPE (W) the	robe Readings Slows/Increment)	SV02 (DP02) Sheet 1 of 1 04/05/2023 04/05/2023 DPH Graphic Probe Record
garteriori di Americani	100 500		PRO	Depth (m)	robe Readings Slows/Increment)	04/05/2023 DPH
garteriori di Americani	500			Depth (m)	robe Readings Slows/Increment)	V - V - V - V - V - V - V - V - V - V -
Legend	Depth (m)	Elevation (mOD)	Water		Probe Readings (Blows/Increment)	Graphic Probe Record
		-		0.00		0 5 10 15 20 25
				0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 2.00 2.10 2.20 2.30 2.40 2.50 2.60 2.80	0 0 2 2 7 6 2 1 1 0 1 1 1 0 0 0 1 1 2 2 3 17 23 27	
				2.90	,	
					1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70	1.30 1 1.40 1 1.50 1 1.60 0 1.70 0 1.80 0 1.90 0 2.00 1 2.10 1 2.20 2 2.30 2 2.40 2 2.50 3 2.60 17 2.70 23 2.80 27

DYNAMIC PROBE RECORD

REPORT NUMBER

24665

1931									24000	,
CONTRACT	Monaghan Active Travel - F	Road & Bridge project				1	BE NO.		SV03 (DPC)3)
CO-ORDINA	ATES 667,659.58 E 833,705.59 N EVEL (mOD)	HAMMER MASS (kg)		50		1	E I E DRILLE E LOGGE		Sheet 1 of 1 04/05/2023 04/05/2023	
CLIENT ENGINEER	Monaghan Co.Co. DBFL	INCREMENT SIZE (mn FALL HEIGHT (mm)	1)	100 500		PRO	BE TYPE	=	DPH	
Depth (m)	Geotechnical Des	cription	Legend	Depth (m)	Elevation (mOD)	Water	1 1	Probe Readings (Blows/Increment)	Graphic Pr Record	20 25
	of Probe at 3.00 m						0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.10 1.20 1.30 1.40 1.50 1.70 1.80 1.90 2.20 2.30 2.40 2.20 2.30 2.40 2.50 2.70 2.80 2.90	0 0 2 6 3 2 7 3 9 3 2 1 3		
GROUNDWA	ATER OBSERVATIONS									

Appendix VIIIa Geotechnical Laboratory Data

W veryous	IWNAB	CETALES IN SCOPE NEG NO. 1331	Monaghan Town Active Travel Development Site - Road & Bridge					relly StLT	ıdy, graveliy, SiLT	velly SILT	CLAY	JLAY.	ely SILT	SILT	SLAY	relly CLAY							information,		Page	1 of 1
			Development Sit			Description	Brown sandy gravelly CLAY	Brown very sandy gravelly StLT	Grey/brown slightly sandy, gravelly, StLT	Grey/brown sandy gravelly SILT	Brown sandy gravelly CLAY	Brown sandy gravelly CLAY	Greybrown sandy gravelly	Brown sandy gravelly SILT	Brown sandy gravelly CLAY	Grey/brown sandy gravelly CLAY					Results relate only to the specimen tested in as received condition unless otherwise noted.	892-12.	Opinions and interpretations are outside the scope of accreditation. * denotes Customer supplied information.	Ž.	Date	18/07/23
		3**	ive Travel			Classification (BS5930)	- 0				CL	10			CL	C I					ndition unless	32-1 and EN17	ditation, * denc	ten approval fr		
	ic Limits	3, 4.4 & 5.0	ı Town Act			Preparation Liquid Limit Clause	4.4	4.4	4.4	4.4	4.4	4.4	4.4	4.4	4.4	4.4					as received co	led by EN 1789	scope of accre	fullwithout writ	oy	٠٠٠٠٠ مارسان مارسان مارسان
***************************************	d & Plast	ses 3.2, 4.	Monaghar	<u> </u>		Preparation	MS	WS	S/M	MS	WS	MS	MS	MS	SM	MS					simen tested in	NOTE: **These clauses have been superceded by EN 17892-1 and EN17892-12.	ire outside the	inced except in	Approved by	科图》
ort	ınt, Liquic	1990, clau				% <425µm	65	71	33	56	54	54	47	37	26	61					only to the spec	clauses have	nerpretations a	Il not be reprod		
Test Report	re Conte	377:Part 2:	Contract Name:			Plasticity Index	23	ď	ďΝ	ďΝ	19	25	В	ΝP	19	24				Remarks:	Results relate of	NOTE: "These	Opinions and ir	This report sha		fanager)
 	of Moistu	with BS13				Plastic Limit %	16	ΔN	ď	ď	13	17	ΝP	ďΝ	16	14				pequ	70.				ve reports	aboratory ∧
	etermination of Moisture Content, Liquid & Plastic Limits	Tested in accordance with BS1377:Part 2:1990, clauses 3.2, 4.3, 4.4 $\&$ 5.3**	24665/2		13/06/23	Liquid Limit %	39	28	32	36	32	42	55	35	35	38				B - Bulk Distu	U - Undisturbed				authorized to approve reports	H Byrne (Laboratory Manager)
	Deter	Tested in	O		ed:	Moisture Content %	18	18	13	26	17	12	20	19	25	16				Sample Type: B - Bulk Disturbed					Persons author	
			Contract No.		Date Tested:	Sample Type*	├	മ	മ	В	æ	a	60	<u>m</u>	മ	8				Ç			method	method	ш_	
					13/06/23	Lab. Ref	A23/17668	A23/1769	A23/1770	A23/1772	A23/1773	A23/1774	A23/1775	A23/1776	A23/1778	A23/1779							meter definitive	meter one point		boratory
			R146534	CORA	eived:	epth* (m)	1.0	3.0	3.0	2.5	2.3	1.7	1.5	0.7	0.7	9.0				WS - Wet sieved	AR - As received	NP - Non plastic	4.3 Cone Penetrometer definitive method	4.4 Cone Penetrometer one point method	•	terials La
ratory	isiness Park		Report No.	Customer C	Samples Received:	Sample No. Depth* (m)	AA197908	AA197910	AA192929	AA205157	AA205163	AA205165	AA205168	AA205171	AA205180	AA205182			-	Preparation: W	∢	Z	Liquid Limit 4.	Clause: 4.		IGSL Ltd Materials Laboratory
IGSL Ltd Materials Laboratory	Unit J5, M7 Business Park Newhall, Naas	Co. Kildare 045 846176				BH/TP*	BH01	BH01	BH02	TP01R	TP03H	TP04R	TP05R	TP06R	TP08R	TP09R										<u> </u>

PSD Temp Rev 1 04/21

Determination of Particle Size Distribution Tested in accordance with: BS1377:Part2:1990, clause 9.2 & 9.5** (note: Sedimentation stage not accredited) **TEST REPORT**

particle	%			Contract No.	24665/2	Report No.	R146536			
size	passing			Contract Name:	Monaghan Tov	nn Active Travel	Development Site	e - Road & Bridges	Monaghan Town Active Travel Development Site - Road & Bridges Results relate only to the specimen tested in as received	en tested in as received
75	100	COBBIEC		BH/TP No.	BH02				condition unless otherwise noted. * denotes Customer	f. * denotes Customer
63	100	COODLES		Sample No.*	AA192929	Lab. Sample No.	۵۰.	A23/1770	supplied information. Opinions and interpretations are	nd interpretations are
20	100			Sample Type:	Ω				outside the scope of accreditation.	'n.
37.5	95			Depth* (m)	3.00	Customer:	CORA		This report shall not be reproduced except in full without	ed except in full without
28	90			Date Received	13/06/2023	13/06/2023 Date Testing started	started	13/06/2023	13/06/2023 the written approval of the Laboratory.	ratory.
20	81			Description:	Grey/brown	Grey/brown slightly sandy, gravelly, SILT	gravelly, SILT			
4	75	GRAVE		•						
10	7.1			Remarks	Note: **Clause 9,2 a	nd Clause 9.5 of BS1377.	Part 2:1990 have been su	Note: **Clause 9.2 and Clause 9.5 of BS1377;Part 2:1990 have been superseded by ISO17892-4:2016	2016 .	
6.3	64						SI	SZ	1	5.
Ŋ	61		1						5.2 201 14	52 9 9 25 25 25
3.35	57		90							
2	52		06							
1.18	48		. 80							
9.0	42		2 %) f							
0.425	40	SAND	G Sujss							
0.3	36		ed :						\	
0.15	30									
0.063	21		ceut							
0.038	16									
0.027	4		50							
0.018	12	SII T/Ci AY	0							
0.010		01.17 CEO.1	0							
0.007	10		0.0	0.0001 0.0	.001	0.01	 		0	901
0.005	æ				CLAY	S/LT Si	Sieve size (mm) SAND	SAND	GRAVEL	
0.002	9			A manufacture of the state of t						
		1001			,		Approved by:		Date:	Page no:
		1 1 2 2 1	.td Matel	IGSL Ltd Materials Laboratory	>				18/07/23	1 of 1
						Persons a	uthorised to approv	re report: J Barrett	Persons authorised to approve report: J Barrett (Quality Manager) H Byrne (Laboratory Manager)	Laboratory Manager)

Determination of Particle Size Distribution Tested in accordance with: BS1377:Part2:1990, clause 9.2 & 9.5** (note: Sedimentation stage not accredited) TEST REPORT

particle	%			Contract No.	24665/2	Report No.	R146537			
size	passing			Contract Name:	Monaghan To	wn Active Travel	Development :	Site - Road & Bridge	Monaghan Town Active Travel Development Site - Road & Bridges Results relate only to the specimen tested in as received	nen tested in as received
75 63	77	COBBLES		BH/TP No. Sample No.*	BH02 AA192930	Lab. Sample No.	No.	A23/1771	condition unless otherwise noted. * denotes Customer supplied information. Opinions and interpretations are	d. * denotes Customer ind interpretations are
20	22			Sample Type:	В				outside the scope of accreditation.	ion.
37.5	55			Depth* (m)	4.00	Customer:	CORA		This report shall not be reproduced except in full without	ced except in full without
28	30			Date Received	13/06/202	13/06/2023 Date Testing started	started	13/06/2023	13/06/2023 the written approval of the Laboratory.	oratory.
20	19			Description:	Brown slight	ly clayey/silty,	slightly sandy	Brown slightly clayey/silty, slightly sandy, GRAVEL with many cobbles	ny cobbles	
<u>+ 0</u>	11 >	GRAVEL		Remarks	Note: **Clause 9.2 a	ind Clause 9.5 of BS1377	:Part 2:1990 have bee	n superseded by ISO17892-4:	Note: **Clause 9.2 and Clause 9.5 of BS1377:Part 2:1990 have been superseded by ISO17892-4:2 sample site did not next the requentments of 851377	***
6.3	Ŋ						S1 89	SS	t	5.4
Ŋ	4		,				0.0 .0	.0 6.0 .0	5. 10. 12.	25 25 25 25 25 25 25 25 25 25 25 25 25 2
3.35	m		3							
2	ĸ		06							
1.18	7									
0.6	~		0 6) 6							
0.425	_	SAND	niss 09							
0.3	-		ed :							
0.15	-									
0.063	-		cent							
			07							
		SILT/CLAY	2 0							
			o o	0001 0	.001	0.01	0.1	- *****	10	100
					CLAY	SILT S	Sieve size (mm) SAND	1) SAND	GRA VEL	
					A STATE OF THE STA		Approved by:		Date:	Page no:
		T TSDI	td Mate	IGSL Ltd Materials Laboratory	>		一种		18/07/23	1 of 1
						Persons a	authorised to app	rove report: J Barrett	Persons authorised to approve report: J Barrett (Quality Manager) H Byrne (Laboratory Manager)	(Laboratory Manager)

PSD Temp Rev 1 04/21

TEST REPORT Determination of Particle Size Distribution

Tested in accordance with: BS1377:Part2:1990 , clause 9.2 & 9.5** (note: Sedimentation stage not accredited)

particle	%			Contract No.	24665/2	Report No.	R146535			
size	passing			Contract Name:	Monaghan To	wn Active Travel	Development Site	- Road & Bridges	Monaghan Town Active Travel Development Site - Road & Bridges Results relate only to the specimen tested in as received	nen tested in as received
75	100	CORRIEC		BH/TP No.	TP07R				condition unless otherwise noted. * denotes Custamer	d. * denotes Customer
63	100	COPPLES		Sample No.*	AA205170	Lab. Sample No.	lo,	A23/1777	supplied information. Opinions and interpretations are	nd interpretations are
20	91			Sample Type:	В				outside the scope of accreditation.	on.
37.5	9			Depth* (m)	1.90	Customer:	CORA		This report shall not be reproduced except in full without	ed except in full without
28	88			Date Received	13/06/202.	13/06/2023 Date Testing started	started	13/06/2023	13/06/2023 the written approval of the Laboratory.	ıratory.
20	98			Description:	Brown slight	ly sandy, slightl	Brown slightly sandy, slightly gravelly, SILT/CLAY	CLAY		
4	85	CDAVE								
10	83	מעזאני		Remarks	Note: **Clause 9.2 a	nd Clause 9.5 of 851377:	Note: **Clause 9,2 and Clause 9,5 of 8S1377:Part 2:1990 have been superseded by ISO17892-4:2016	erseded by ISO17892-4:2	.016 .	
6.3	80						SI	SS	8	S.
ស	79		•				0		3 5 5 10 14 20 14 28	55 25 25 37 82
3.35	92		100							
7	73		06							
1.18	69		08							
9.0	65		, 2 8) (8							
0.425	63	SAND	o Sujes							
0.3	09									
0.15	53									
0.063	45		cent							
0.038	36									
0.027	33		50		 					
0.017	28	CII T//CI AV	10							
0.010	24	3F1/5F21	0							
0.007	21		0.0	0.0001 0.001	71	0.01	0.1	· France	10	100
0.005	18				CLAY	SILT Si	Sieve size (mm) SAND	SAND	GRAVEL	
0.002	13		2000 Table 10 100 100 100 100 100 100 100 100 100							
				-1-1-1-	1		Approved by:		Date:	Page no:
		165L L	td Matei	IGSL Ltd Materials Laboratory	>		一些公子		18/07/23	1 of 1
						Persons a	uthorised to approve	report: J Barrett	Persons authorised to approve report: J Barrett (Quality Manager) H Byrne (Laboratory Manager)	Laboratory Manager)

IGSL Ltd Materials Laboratory Unit J5,M7 Business Park

Naas

Test Report

Determination of Moisture Condition Value at Natural Moisture Content

Co. Kildare 045 899324		Tested in accordance	with BS1377:Part 4:1990, clause 5.4	DETACLED IN SCOPE RES
	Report No.	•	R146540	
	Contract No	o.	24665/2	
	Contract Na	ame:	Monaghan Town Active Travel Development - Roads	& Bridges
	Customer:		CORA	
	BH/TP*		TP04R	
	Sample No	.*	AA205165	
	Depth* (m)		1.70	
	Sample Typ	oe:	В	
	Lab Sample	e No.	A23/1772	
	Source* (if	applicable)	N/A	
	Material Ty	pe* (if applicable):	В	
	Sample Re	ceived:	13/06/23	
	Date Teste	d:	15/06/23	
	Sample Ce	rt:	Not Provided	
	Moisture Co	ontent (%):	16	
	% Particles (By dry mas		17	
	MCV:		5.4	
	Interpretation	on of Plot:	Steepest Straight Line	
	Description	of Soil:	Brown sandy gravelly CLAY	

Results relate only to the specimen tested, in as received condition unless otherwise noted.	Persons authorised to approve reports
Opinions and interpretations are outside the scope of accreditation.	J Barrett (Quality Manager)
* denotes Customer supplied information.	H Byrne (Laboratory Manager)
This report shall not be reproduced except in full without written approval from the Laboratory.	

IGSL Ltd Materials Laboratory 18/07/23 1 of 1		Approved by	Date	Page
	IGSL Ltd Materials Laboratory	VI Eyou	18/07/23	1 of 1

IGSL Ltd Materials Laboratory Unit J5,M7 Business Park

Naas

Test Report

Determination of Moisture Condition Value at Natural Moisture Content

Co. Kildare 045 899324		Tested in accordance	with BS1377:Part 4:1990, clause 5.4	Decreted IN SCOPE RE
	Report No.		R205171	
	Contract No	0.	24665/2	
	Contract Na	ame:	Monaghan Town Active Travel Development - Roads	& Bridges
	Customer:		CORA	
	ВН/ТР*		TP06R	
	Sample No	.*	AA205171	
	Depth* (m)		0.70	
	Sample Typ	oe:	В	
	Lab Sample	e No.	A23/1776	
	Source* (if	applicable)	N/A	
	Material Ty	pe* (if applicable):	В	
	Sample Re	ceived:	13/06/23	
	Date Teste	d:	17/06/23	
	Sample Ce	rt:	Not Provided	
	Moisture Co	ontent (%):	20	
	% Particles (By dry mas		45	
	MCV:		4.6	
	Interpretation	on of Plot:	Steepest Straight Line	
	Description	of Soil:	Brown sandy gravelly SILT	

Results relate only to the specimen tested, in as received condition unless otherwise noted.	Persons authorised to approve reports
Opinions and interpretations are outside the scope of accreditation.	J Barrett (Quality Manager)
* denotes Customer supplied information.	H Byrne (Laboratory Manager)
This report shall not be reproduced except in full without written approval from the Laboratory.	

IGSL Ltd Materials Laboratory

Approved by	Date	Page
4 Eyean	18/07/23	1 of 1

IGSL Ltd Materials Laboratory

Unit J5,M7 Business Park

Naas

Co. Kildare

Test Report

Determination of Moisture Condition Value at Natural Moisture Content

045 899324		Tested in accordance with BS1377:Part 4:1990, clause 5.4			
	Report No.		R146542		
	Contract No.		24665/2		
	Contract Na	ame:	Monaghan Town Active Travel Development - Roads	& Bridges	
	Customer:		CORA		
	BH/TP*		TP08R		
	Sample No	.*	AA205180		
	Depth* (m)		0.70		
	Sample Type:		В		
	Lab Sample No.		A23/1778		
	Source* (if applicable)		N/A		
	Material Type* (if applicable):		В		
	Sample Received:		13/06/23		
	Date Teste	d:	15/06/23		
	Sample Ce	rt:	Not Provided		
	Moisture Co	ontent (%):	23		
	% Particles (By dry mas		10		
	MCV:		5.7		
	Interpretation	on of Plot:	Steepest Straight Line		
Description of Soil:		of Soil:	Brown sandy gravelly CLAY		

Results relate only to the specimen tested, in as received condition unless otherwise noted.	Persons authorised to approve reports
Opinions and interpretations are outside the scope of accreditation.	J Barrett (Quality Manager)
* denotes Customer supplied information.	H Byrne (Laboratory Manager)
This report shall not be reproduced except in full without written approval from the Laboraton.	

Approved by Date Page IGSL Ltd Materials Laboratory 41 Byen 1 of 1 18/07/23

IGSL Ltd Materials Laboratory

Unit J5,M7 Business Park

Naas

Co. Kildare 045 899324

Test Report

Determination of Moisture Condition Value at Natural Moisture Content

Tested in accordance with BS1377:Part 4:1990, clause 5.4

045 899324		3 W.W. 20107711 GIT 11,1000, GIUUGO 0.4
	Report No.	R146543
	Contract No.	24665/2
	Contract Name:	Monaghan Town Active Travel Development - Roads & Bridges
	Gustomer:	CORA
	BH/TP*	TP09R
	Sample No.*	AA205182
	Depth* (m)	0.60
	Sample Type:	В
	Lab Sample No.	A23/1779
	Source* (if applicable)	N/A
	Material Type* (if applicable):	В
	Sample Received:	13/06/23
	Date Tested:	16/06/23
	Sample Cert:	Not provided
	Moisture Content (%):	17
	% Particles > 20mm (By dry mass):	23
	MCV:	6.8
	Interpretation of Plot:	Steepest Straight Line
	Description of Soil:	Grey brown sandy gravelly CLAY

Results relate only to the specimen tested, in as received condition unl	Persons authorised to approve reports				
Opinions and interpretations are outside the scope of accreditation.			J Barrett (Quality Manager)		
* denotes Customer supplied information.		H Byrne (Laboratory Manager)			
This report shall not be reproduced except in full without written approval from the Laboratory.				1	
		Date	Page		
1					

IGSL Ltd Materials Laboratory

Approved by	Date	Page
H. Eyac	18/07/23	1 of 1

IGSL Ltd Materials Laboratory Unit J5,M7 Business Park Naas Co.Kildare

TEST REPORT Determination of California Bearing Ratio (CBR)

045 899324	Tested in	n accordan	ce with BS137	7:Part 4:199	0, clause 7	DETAILED IN SCOPE REG NO. 1991
Report No.	R146544		Contract	Monaghan Town	Active Travel Deve	elopment Site - Road & Bridges
Contract No.	24665 / 2		Customer		005) A
Date received	13/06/23		Date Tested	15/06/23	COF	1A
BH/TP No.*	TP 04R		Sample No.*	AA205165	Type:	В
Depth* (m)	1.70		Lab sample N	lo.	A23/1772	
0.4				·	···	
0.3		-				
(S)						
Force (kN)			100			
For						
		,				
0.1						
1,						
0 1						
0 0.5	1 1.5	2 2.5	3 3.5 4		5.5 6 6.5	7 7.5
			Penetration (r	nm)		
Key:		Тор		Base		
Description:	Brown sand	y gravelly	CLAY	11.000	· · · · · · · · · · · · · · · · · · ·	
Initial Condition		Unsoaked				
Moisture Conte Surcharge (kg)	. ,	16 4	Bulk Density (Dry Density (M		2.14 1.85	
% Material >20	mm:	15			1.00	
Method of com	paction:	Static Com	paction Metho	d 2		····
Test Result	Тор	Base				
CBR %	1.3	1.2				
Moisture Content %	16	16]			
Results relate only to the speciments	-				Porcons outher	-

Results relate only to the energines tested	in as received condition unless athenvise a	atadi

Opinions and interpretations are outside the scope of accreditation.

denotes Customer supplied information

Persons authorized to approve reports

J Barrett (Quality Manager)

H Byrne (Laboratory Manager)

This report shall not be reproduced except in full without written approval from the Laboratory.

	Approved by	Date
IGSL Ltd Materials Laboratory	HR	18/07/23

Page No.

1 of 1

IGSL Ltd

Materials Laboratory Unit J5,M7 Business Park Naas Co.Kildare

TEST REPORT Determination of California Bearing Ratio (CBR)

045 899324	are		Tested	n accordan	ce with BS13	77:Part 4:199	0, clause 7	DETAILED IN SCOPE RED NO. 1327
	Report	No.	R146545 Contract Monaghan Town Active Travel Develo					lopment Site - Road & Bridges
	Contract No. 24665 / 2 Customer							
	Date re	eceived	13/06/23		Date Tested	16/06/23	COF	RA
	BH/TP	No.*	TP06R			AA205171	Type:	В
	Depth*	(m)	0.70		Lab sample		A23/1776	_
		•			·			
	0.4 -							
	0.3 ~							
Ê								
Force (KN)	0.2 -							
Ę.								
			_					
	0.1 -							
		سرز						
		'						
	0 -							
	C	0.5	1 1.5	2 2.5	3 3.5 4 Penetration		5.5 6 6.5	7 7.5
					renetration	(111111)		
	Key:			Тор	***************************************	Base		
	Descrip	otion:	Brown san	dy gravelly s	SILT		*****	
	Initial C	Condition	າ:	Unsoaked				
			ent (%):	20	Bulk Density		2.04	
		rge (kg) erial >20		4 37	Dry Density	(Mg/m³):	1.70	
			paction:		paction Meth	od 2		
	Test R	-cult	Тор	Base	1			
		R %	0.8	1.0	1			
		sture	20	20	1			

Test Result	Тор	Base
CBR %	0.8	1.0
Moisture Content %	20	20

Results relate only to the specimen tested, in as received condition unless otherwise noted

Opinions and interpretations are outside the scope of accreditation,

denotes Customer supplied information

J Barrett (Quality Manager) H Byrne (Laboratory Manager)

Persons authorized to approve reports

			A
IGSL Ltd	Materials	Laboratory	

Approved by	Date	Page No.
H Feyer	18/07/23	1 of 1

IGSL Ltd

Materials Laboratory Unit J5,M7 Business Park

Naas Co.Kildare

TEST REPORT Determination of California Bearing Ratio (CBR)

Naas Co.Kilda 045 899324	are	Tested in	accordan	ce with BS137	7:Part 4:1990	0, clause 7	DETAILED IN SCOPE REG NO. 1315
	Report No.	R146546		Contract	Monaghan Town	Active Travel Deve	elopment Site - Road & Bridges
	Contract No.	24665 / 2		Customer			
	Date received	13/06/23		Date Tested	15/06/23	COF	łA
	BH/TP No.*	TP08R		Sample No.*		Tyne:	В
	Depth* (m)	0.70		Lab sample N		A23/1778	
	0.4		1 1	·			1
	0.3						
Ŕ	0.2						
Force (kN)	0.2		100				
_		1.					
	0.1						
	0 / 0.5	1 1.5	2 2.5	3 3.5 4	4.5 5 5	5.5 6 6.5	7 7.5
	0 0.0	1 (.5		Penetration (5.5 0 0.5	7 7.5
	Key:	4-W-1-6-1	Тор		Base		
	Description:	Brown sand	dy gravelly	CLAY			
	Initial Conditio	n'	Unsoaked	, , , , , , , , , , , , , , , , , , ,			
	Moisture Cont		23	Bulk Density	(Mg/m³):	1.98	
	Surcharge (kg)		4	Dry Density (I		1.61	
	% Material >20 Method of con		8.4 Static Com	paction Metho	od 2		
	Test Result	Тор	Base	7			
	CBR %	1.5	1.4	~			
	Moisture Content %	23	23]			
	- 1						

Results relate only to the specimen tested, in as received condition unless otherwise noted

Opinions and interpretations are outside the scope of accreditation.

denotes Customer supplied information

Persons authorized to approve reports

J Barrett (Quality Manager)

H Byrne (Laboratory Manager)

This report shall not be reproduced except in full without written approval from the Laboratory.

IGSL Ltd Materials Laboratory

Approved by	Date	Page No.	
W Eyer	18/07/23	1 of 1	

IGSL Ltd Materials Laboratory Unit J5,M7 Business Park Naas Co.Kildare

TEST REPORT Determination of California Bearing Ratio (CBR)

5 899324	Tested in	accordan	ce with BS137	7:Part 4:1990	0, clause 7	DETAILED IN SCOPE REG NO. 137
Report No.	R146547		Contract	Monaghan Town	Active Travel Deve	olopment Site - Road & Brid
Contract No.	24665 / 2		Customer			
Date received	13/06/23		Date Tested	16/06/23	COF	RA
BH/TP No.*	TP09R		Sample No.*		Type:	В
Depth* (m)	0.60		Lab sample N		A23/1779	
0.0			·			
0.6						
0.5						
0.5						
0.4						
Force (kN)						
orce						
0.2		/				
J						
0.1	1					
for the						
o /		<u> </u>				
0 0.5	1 1.5	2 2.5	3 3.5 4		5.5 6 6.5	7 7.5
			Penetration (mm)		
Key:		Тор		Base		
Description:	Grey/brown	sandy gra	velly CLAY		***************************************	
Initial Condition	n:	Unsoaked				
Moisture Conf	tent (%):	17	Bulk Density		2.07	
Surcharge (kç % Material >2		4 19	Dry Density (Mg/m³):	1.77	
Method of cor			paction Metho	od 2		
Test Result	Тор	Base	7			
CBR %	2.0	1.8				
Moisture Content %	17	17				
L Comem 76			_			

This report shall not be reproduced except in full without written approval from the Laboratory

denotes Customer supplied information

H Byrne (Laboratory Manager)

Approved by

Date

Page No.

IGSL Ltd Materials Laboratory M7 Business Park Naas

Test Report

Dry Density/Moisture Content Relationship

Tested in accordance with BS1377:Part 4:1990

Report No.

Co. Kildare

R146548

Contract No. 24665/2

Contract Name:

Monaghan Town Active Travel Development - Road & Bridges

Location*:

TP04R

Sample No*.

AA205165

Depth* (m) 1,7 Material Type

P

Lab sample no.

A23/1774

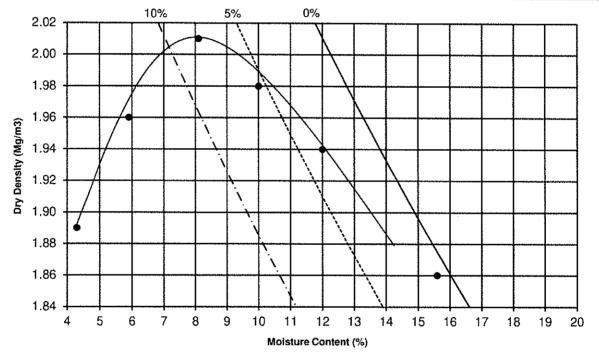
Customer: CORA

Date Received:

13/06/2023

Test Method:

2.5 Kg Rammer


Date Tested:

15/06/2023

BS1377:Part 4:1990

3.3

Dry Density (Mg/m ³)		2.01	1.98		1.89		
Moisture Content (%)	16	8.1	10	12	4.3	5.9	

Maximum Dry Density (Mg/m³):

2.01

Optimum Moisture Content (%):

8.1

Description:

Brown sandy gravelly CLAY

Sample Preparation:

Material passing 20mm

Single / Separate samples used

Particle Density (Mg/m³):

2.65

Particle Density:

Assumed

% retained on 20/37.5mm sieve:

15

Results relate only to the specimen tested, in as received condition unless otherwise noted.

Persons authorised to approve reports

Opinions and interpretations are outside the scope of accreditation.

IGSL Materials Laboratory

J Barrett (Quality Manager)

denotes Customer supplied information

H Byrne (Laboratory Manager)

Approved by	Date	Page
H Eyer	18/07/23	1 of 1

IGSL Ltd

Materials Laboratory M7 Business Park Naas

Test Report

Dry Density/Moisture Content Relationship

Co. Kildare

Tested in accordance with BS1377:Part 4:1990

Report No.

R146549

Contract No. 24665/2

Contract Name:

Monaghan Town Active Travel Development - Road & Bridges

Location*:

TP06R

Sample No*.

AA205171

Depth* (m)

0.7 Material Type R

Lab sample no.

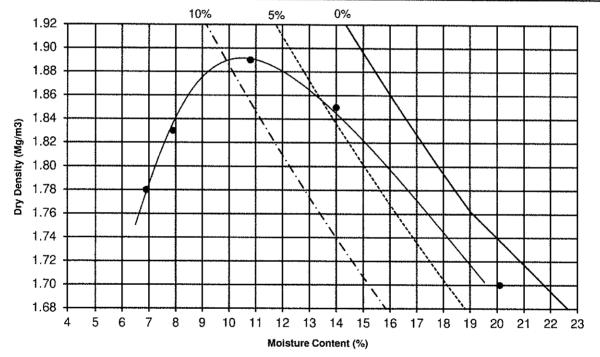
Date Received:

A23/1776

Customer: CORA

Test Method:

2.5 Kg Rammer


Date Tested:

13/06/2023 16/06/2023

BS1377:Part 4:1990

3.3

Dry Density (Mg/m ³)	1.70	1.78	1.85	1.89	1.83		
Moisture Content (%)	20	6.9	14	11	7.9	0	

Maximum Dry Density (Mg/m³):

1.89

Optimum Moisture Content (%):

11

Description:

Brown sandy gravelly SILT

Sample Preparation:

Material passing 20mm

Single / Separate samples used

Particle Density (Mg/m³):

2.65

Particle Density:

Assumed

% retained on 20/37.5mm sieve:

37

Results relate only to the specimen tested, in as received condition unless otherwise noted.

Opinions and interpretations are outside the scope of accreditation.

Persons authorised to approve reports J Barrett (Quality Manager)

H Byrne (Laboratory Manager)

* denotes Customer supplied information

IGSL Materials Laboratory	Approved by	Date	Page
	4 Byan	18/07/23	1 of 1
			l

IGSL Ltd Materials Laboratory M7 Business Park Naas

Test Report

Dry Density/Moisture Content Relationship

Tested in accordance with BS1377:Part 4:1990

Report No.

Co. Kildare

R146560

Contract No. 24665/2

Contract Name:

Monaghan Town Active Travel Development - Road & Bridges

Location*:

TP08R

Sample No*.

AA205180

Depth* (m)

0.7 Material Type

Lab sample no.

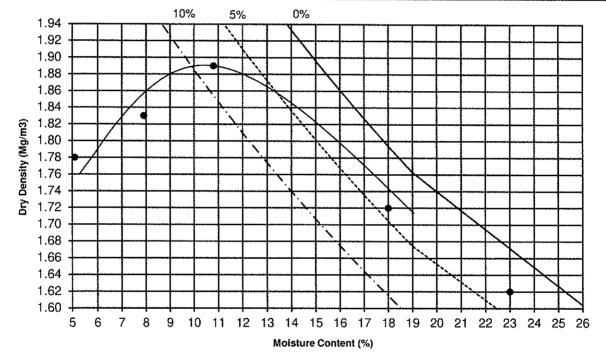
A23/1778

Customer: CORA

Date Received:

13/06/2023

Test Method:


2.5 Kg Rammer

Date Tested:

15/06/2023

BS1377:Part 4:1990

Dry Density (Mg/m³)	1.62	1.72	1.78	1.89	1.83		
Moisture Content (%)	23	18	5.1	11		0	

Maximum Dry Density (Mg/m3):

1.80

Optimum Moisture Content (%):

11

Description:

Brown sandy gravelly CLAY

Sample Preparation:

Material passing 20mm

Single / Separate samples used

Particle Density (Mg/m³):

2.65

Particle Density:

Assumed

% retained on 20/37.5mm sieve:

37

Results relate only to the specimen tested, in as received condition unless otherwise noted.

Persons authorised to approve reports

Opinions and interpretations are outside the scope of accreditation.

IGSL Materials Laboratory

J Barrett (Quality Manager)

denotes Customer supplied information

H Byrne (Laboratory Manager)

Approved by	Date	Page
A Bay or man.	18/07/23	1 of 1

IGSL Ltd Materials Laboratory M7 Business Park Naas

Test Report

Dry Density/Moisture Content Relationship

Co. Kildare

Tested in accordance with BS1377:Part 4:1990

Report No.

R146551

Contract No. 24665/2

Contract Name:

Monaghan Town Active Travel Development - Road & Bridges

Location*:

TP09R

Sample No*.

AA205182

Depth* (m)

0.6

Material Type

В

Lab sample no.

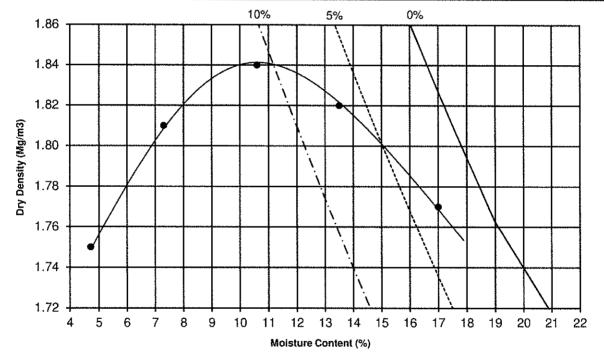
Date Received:

A23/1779

Customer: CORA

13/06/2023

Test Method:


2.5 Kg Rammer

Date Tested:

16/06/2023

BS1377:Part 4:1990

Dry Density (Mg/m ³)	1.77	1.82	1.84	1.81	1.75	
Moisture Content (%)	17	14	11	7.3	4.7	

Maximum Dry Density (Mg/m3):

1.84

Optimum Moisture Content (%):

11

Description:

Grey/brown sandy gravelly CLAY

Sample Preparation:

Material passing 20mm

Single / Separate samples used

Particle Density (Mg/m³):

2.65

Particle Density:

Assumed

% retained on 20/37.5mm sieve:

19

Results relate only to the specimen tested, in as received condition unless otherwise noted.

Persons authorised to approve reports

Opinions and interpretations are outside the scope of accreditation.

IGSL Materials Laboratory

J Barrett (Quality Manager)

denotes Customer supplied information

H Byrne (Laboratory Manager)

Approved by	Date	Page	Į
Wegan	18/07/23	1 of 1	

		(Diametrial)	POINT LOAD ST	IRENGTH	(Diametrial) POINT LOAD STRENGTH INDEX TEST DATA				(
Contract: Mo	naghan town	Contract: Monaghan town (Active Travel) - Esample Type: Date of test	_	Core	023				
Contract no.	24665			7 00 00					
RC No.	Depth m	D (Diameter) mm	P (failure load) kN	ш	Is (index strength) Mpa	Is(50) (index strength) Mpa	*UCS MPa	Type	Orienation
RC01R	8.2	78	26.4	1.222	4.34	5.30	106	٥	
	8.7	78	15.0	1.222	2.47	3.01	9	σ	*
	10.4	78	33.8	1.222	5.55	6.78	136	ъ	*
RC02R	8.7	78	23.2	1.222	3.81	4.65	93	р	*
	9.4	78	22.6	1.222	3.72	4.54	91	О	//
	10.3	78	29.5	1 222	4.85	5 92	118	7	: '
	2	2	3	1111	5	3.35	0	9 .	<u>;</u> :
								σ	<i>'</i>
								р	//
								ъ	/
								J T	: '
								5	//
Stat	Statistical Summary Data	ary Data	ls(50)	*SON	*UCS Normal	*UCS Normal Distribution Curve	e,	Ą	Abbreviations
Number of Sa	Number of Samples Tested		9	9	0.1			-	irreqular
Minimum			3.01	9	<			a	axial
Average			5.03	101	0.08		T		block
Maximum			6.78	136	/ 900			0	diametral
Standard Dev.			1.29	26	0000				
Upper 95% Cc	Joper 95% Confidence Limit	:=:	7.57	151.43	0.04			anne	anniny orientation
l ower 95% Co	ower 95% Confidence Limit	· - <u>t=</u>	2.50	49 95	SI 64 54 54 54 54 54 54 54 54 54 54 54 54 54	_		+	to plane of
		<u> </u>	ì)	0.02			weak	weakness/hedding
Comments:							7	=	Inknown
*UCS taken as k x Point Load Is(50):	s k x Point Lo	ad Is(50): k=		20	0 100	200	300	ם	pernendicular
				2)	75	perpendicular
								7	Dalallel

Appendix VIIIb C	Chemical / Environm	ental Laboratory Data

eurofins &

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

08-Jun-2023

Final Report

Report No.: 23-19442-1

Initial Date of Issue: 19-Jun-2023

Re-Issue Details:

Client **IGSL**

Client Address: M7 Business Park

Naas

County Kildare

Ireland

Contact(s): Darren Keogh

Project 24665 / 2 Monaghan Town Active

Travel Development Site

Quotation No.: Q20-19951 **Date Received:** 08-Jun-2023

Order No.:

Approved By:

No. of Samples: 13

Date Instructed:

Turnaround (Wkdays): 7 Results Due: 16-Jun-2023

Date Approved:

Details: Stuart Henderson, Technical

Manager

19-Jun-2023

Results - Leachate

Client: IGSL			Che	mtest J	op No.:	Chemtest Job No.: 23-19442	23-19442	23-19442	23-19442	23-19442	23-19442	23-19442	23-19442
Quotation No.: Q20-19951		_	Chemte	est Sam	Chemtest Sample ID.:	1653336	1653338	1653339	1653341	1653342	1653344	1653345	1653348
			ີ້ວ	ent Sarr	Client Sample ID.:	AA197907	AA192927	AA205155	AA205160	AA205162	AA205164	AA205167	AA205182
			Š	ample Li	Sample Location:	BH01	BH02	TP01R	TP02R	TP03R	TP04R	TP05R	TP09R
				Samp	Sample Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				Top De	Top Depth (m):	0.50	1.00	09:0	2.00	1.40	0.70	0.50	0.60
Determinand	Accred. St	SOP	OP Type	Units	GO 1				100				
Hd	n	1010	10:1		N/A	8.6	8.8	8.1	8.4	8.2	8.6	8.8	8.9
Ammonium	n	1220	10:1	∥gm	0.050	0.18	0.11	0.18	0.12	0.26	0.12	0.13	0.24
Ammonium	N	1220	101	mg/kg	0.10	2.2	1.5	1.9	1.3	2.8	£.	1.8	3.5
Boron (Dissolved)	Π	1455	10:1	mg/kg	0.01	< 0.01	0.12	0.16	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzolijfluoranthene	z	1800	10:1	l/bri	0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010

Project: 24665 / 2 Monaghan Town Active Travel Development Sitel.

Client: IGSL		Ö	hemtest	Chemtest Job No.:	23-19442	23-19442	23-19442	23-19442	23-19442	23-19442	23-19442	23-19442	23.19442
Quotation No.: Q20-19951		Chen	ntest Saı	Chemtest Sample ID.:	1653336	1653337	1653338	1653339	1653340	1653341	1653342	1653343	1653344
			Client Sa	Client Sample ID.:	AA197907	AA197908	AA192927	AA205155	AA205157	AA205160	AA205162	AA205163	AA205164
			Sample	Sample Location:	BH01	BH01	BH02	TP01R	TP01R	TP02R	TP03R	TP03R	TP04R
			Sam	Sample Type:	TIOS	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Top D	Top Depth (m):	0.50	1.00	1.00	09:0	2.50	2.00	1.40	2.30	0.70
			Aspe	Asbestos Lab:	DURHAM		DURHAM	DURHAM		DURHAM	DURHAM		DURHAM
Determinand	Accred.	dos	Units	G07					0.000.000.000				
ACM Type	n	2192	6	N/A	1			•		1	f		1
Asbestos Identification	n	2192	<u> </u>	N/A	No Asbestos Detected		No Asbestos Detected	No Asbestos Defected		No Asbestos Detected	No Asbestos Detected		No Asbestos Detected
Moisture	z	2030	%	0.020	12	15	8.7	17	18	18	17	12	4
pH (2.5:1)	z	2010		4.0		[A] 8.2						[A] 8.1	
Boron (Hot Water Soluble)	n	2120	mg/kg	0.40	[A] < 0.40		[A] < 0.40	[A] 2.8		(A) 1.9	[A] 1.9		[A] < 0.40
Magnesium (Water Soluble)	z	2120	1/6	0.010		[A] < 0.010						[A] < 0.010	
Suiphate (2:1 Water Soluble) as SO4	Λ	2120	L_	0.010		[A] < 0.010						[A] < 0.010	
Total Sulphur	n	2175		0.010		(A) 0.13				•		[A] 0.22	
Sulphur (Elemental)	n	2180	ш	1.0	[A] 5.6		(A) 57	[A] 5.6		[A] 130	[A] 29		[A] 3.1
Chloride (Water Soluble)	n	2220	l/g	0.010		[A] < 0.010						[A] 0.016	
Nitrate (Water Soluble)	z	2220	<u> </u>	0.010		< 0.010						0.082	
Cyanide (Total)	5	2300	mg/kg	╙	[A] < 0.50		[A] 6.5	[A] 150		[A] < 0.50	[A] < 0.50		[A] < 0.50
Sulphide (Easily Liberatable)	z	2325		0.50	[A] 14		[A] 9.8	[A] 5.6		[A] 5.8	[A] 9.6		[A] 18
Ammonium (Water Soluble)	n	2220	- - - - - -	0.01		< 0.01						< 0.01	
Sulphate (Acid Soluble)	n	2430		0.010	[A] 0.12	[A] 0.064	[A] 0.057	[A] 0.064		[A] 0.072	[A] 0.032	[A] 0.069	[A] 0.073
Arsenic		2455	i mg/kg	0.5	4.6		3.6	3.9		5.1	3.5		4.0
Barium	n	2455	mg/kg	0	09		42	61		09	28		45
Cadmium	'n	2455	mg/kg	0.10	< 0.10		< 0.10	< 0.10		< 0.10	< 0.10		< 0.10
Chromium	n	2455	mg/kg	0.5	21		19	15		21	12		21
Molybdenum	n	2455	mg/kg	0.5	< 0.5		< 0.5	< 0.5		< 0.5	< 0.5		< 0.5
Antimony	z	2455	mg/kg	2.0	< 2.0		< 2.0	< 2.0		< 2.0	< 2.0		< 2.0
Copper	n	2455	mg/kg	0.50	16		21	13		22	10		23
Mercury	n	2455	mg/kg	0.05	< 0.05		90'0	60'0		0.25	90.0		0.07
Nickel	n	2455	mg/kg	0.50	34		34	24	-	31	19		39
Lead	n	2455	mg/kg	0.50	15		96	29		54	20		47
Selenium	n	2455	mg/kg	0.25	< 0.25		< 0.25	< 0.25		< 0.25	< 0.25		< 0.25
Zinc	_	2455	mg/kg	0.50	42		20	64		75	44		56
Chromium (Trivalent)	z	2490	mg/kg	1.0	21		61	15		21	12		21
Chromium (Hexavalent)		2490	mg/kg	0.50	< 0.50		09:0 >	< 0.50		< 0.50	< 0.50		< 0.50
Organic Matter		2625		0.40				[A] 9.1	[A] 2.0			[A] 1.3	
Mineral Oil (TPH Calculation)	2	2670	mg/kg	10	< 10		< 10	55		46	< 10		< 10
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	[A] < 1.0		[A] < 1.0	[A] < 1.0		[A] < 1.0	[A] < 1.0		[A] < 1.0
Aliphatic TPH >C6-C8		2680	mg/kg	1.0	[A] < 1.0		[A] < 1.0	[A] 43		[A] 46	[A] < 1.0		[A] < 1.0
Aliphatic TPH >C8-C10		2680	mg/kg	1.0	[A] < 1.0		[A] < 1.0	[A] < 1.0		[A] < 1.0	[A] < 1.0		[A] < 1.0
Aliphatic TPH >C10-C12	Z	2680	mg/kg	1.0	[A] < 1.0		[A] 4.6	[A] 12		[A] < 1.0	[A] < 1.0		[A] < 1.0
Aliphatic TPH >C12-C16		2680		1.0	[A] < 1.0		[A] < 1.0	[A] < 1.0		[A] < 1.0	[A] < 1.0		[A] < 1.0
Aliphatic TPH >C16-C21	٦	2680	mg/kg	0.	[A] < 1.0		[A] < 1.0	[A] < 1.0		[A] < 1.0	[A] < 1.0		[A] < 1.0
						•							

Project: 24665 / 2 Monaghan Town Active Travel Development Site.

Client: IGSL		NO.	emtest	Chemiest Job No :	23-19442	23-19442	22.10442	C 22.102.42	22.40AA2	CANOT-50	CKNO1.50	OS 40AAO	22 404.42
Quotation No.: Q20-19951		Chem	Chemtest Sample ID.:	nple ID.:	1653336	1653337	1653338	1653339	1653340	1653341	1653342	1653343	1653344
		ြ	lient Sar	Client Sample ID.:	AA197907	AA197908	AA192927	AA205155	AA205157	AA205160	AA205162	AA205163	AA205164
		ľ	Sample L	Sample Location:	BH01	BH01	BH02	TP01R	TP01R	TP02R	TP03R	TP03R	TP04R
			Samp	Sample Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Top De	Top Depth (m):	0.50	1.00	1.00	09'0	2.50	2.00	1.40	2.30	0.70
			Asbes	Asbestos Lab:	DURHAM		DURHAM	DURHAM		DURHAM	DURHAM		DURHAM
Determinand	Accred.	SOP	Units	COD			0 10 10 10 E	63			100	SELECTION OF SELECTION	
Aliphatic TPH >C21-C35	z	2680	mg/kg	1.0	[A] < 1.0		[A] < 1.0	[A] < 1.0		[A] < 1.0	[A] < 1.0		[A] < 1.0
Aliphatic TPH >C35-C44	Z	2680	mg/kg	1.0	(A) < 1.0		[A] < 1.0	[A] < 1.0		[A] < 1.0	[A] < 1.0		[A] < 1.0
Total Aliphatic Hydrocarbons	z	2680	mg/kg	5.0	[A] < 5.0		[A] < 5.0	[A] 55		[A] 46	[A] < 5.0		[A] < 5.0
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	[A] < 1.0		[A] < 1.0	[A] < 1.0		[A] < 1.0	[A] < 1.0		[A] < 1.0
Aromatic TPH >C7-C8	z	2680		1.0	[A] < 1.0		[A] < 1.0	[A] < 1.0		[A] < 1.0	[A] < 1.0		[A] < 1.0
Aromatic TPH >C8-C10	z	2680		1.0	[A] < 1.0		[A] < 1.0	[A] < 1.0		[A] < 1.0	[A] < 1.0		[A] < 1.0
Aromatic TPH >C10-C12	z	2680	mg/kg	1.0	[A] < 1.0		[A] < 1.0	[A] < 1.0		[A] < 1.0	[A] < 1.0		[A] < 1.0
Aromatic TPH >C12-C16	z	2680	mg/kg	1.0	[A] < 1.0		[A] < 1.0	[A] < 1.0		[A] < 1.0	[A] < 1.0		A] < 1.0
Aromatic TPH >C16-C21	z	2680	mg/kg	1.0	[A] < 1.0		[A] < 1.0	[A] 25		[A] 120	[A] < 1.0		A < 1.0
Aromatic TPH >C21-C35	z	2680	mg/kg	1.0	[A] < 1.0		[A] 41	[A] 180		[A] 450	[A] 75		[A] < 1.0
Aromatic TPH >C35-C44	z	2680		L	[A] < 1.0		[A] < 1.0	[A] < 1.0		[A] < 1.0	[A] < 1.0		[A] < 1.0
Total Aromatic Hydrocarbons	z	2680		5.0	[A] < 5.0		[A] 41	[A] 200		[A] 570	[A] 75		[A] < 5.0
Total Petroleum Hydrocarbons	z	2680	mg/kg	10.0	[A] < 10		[A] 46	[A] 260	•	[A] 610	[A] 75		[A] < 10
Benzene	ก	2760	hg/kg	1.0	[A] < 1.0		[A] < 1.0	[A] < 1.0		[A] < 1.0	[A] < 1.0		[A] < 1.0
Toluene	n	2760	рд/ка	1.0	[A] < 1.0		[A] < 1.0	[A] < 1.0		[A] < 1.0	[A] < 1.0		[A] < 1.0
Ethylbenzene	n	2760	µg/kg	1.0	[A] < 1.0		[A] < 1.0	[A] < 1.0		[A] < 1.0	[A] < 1.0		[A] < 1.0
m & p-Xylene	n	2760		1.0	[A] < 1.0		[A] < 1.0	[A] < 1.0		[A] < 1.0	[A] < 1.0		[A] < 1.0
o-Xylene	n	2760	ug/kg	1.0	[A] < 1.0		[A] < 1.0	[A] < 1.0		[A] < 1.0	[A] < 1.0		[A] < 1.0
Methyl Tert-Butyl Ether	n	2760	ug/kg	1.0	[A] < 1.0		[A] < 1.0	[A] < 1.0		[A] < 1.0	[A] < 1.0		[A] < 1.0
Naphthalene	Z	2800	mg/kg	0.010	[A] < 0.010		[A] 0.13	[A] 0.71		[A] < 0.010	[A] < 0.010		[A] < 0.010
Acenaphthylene	Z	2800	mg/kg	0.010	[A] < 0.010		[A] 0.12	[A] 1.3		[A] < 0.010	[A] < 0.010		[A] < 0.010
Acenaphthene	z	2800	mg/kg	0.010	[A] < 0.010		[A] 0.11	[A] 0.13		[A] < 0.010	[A] < 0.010		[A] < 0.010
Fluorene	Z	2800	mg/kg	0.010	[A] < 0.010		[A] 0.11	[A] 0.69		[A] < 0.010	[A] < 0.010		[A] < 0.010
Phenanthrene	z	2800	mg/kg	0.010	[A] < 0.010		[A] 0.49	[A] 5.6		[A] < 0.010	[A] 0.16		[A] < 0.010
Anthracene	z	2800	mg/kg	0.010	[A] < 0.010		[A] 0.31	[A] 1.9		[A] < 0.010	[A] < 0.010		[A] < 0.010
Fluoranthene	z			0.010	[A] < 0.010		(A) 1.6	[A] 14		[A] < 0.010	(A) 0.29		[A] < 0.010
Pyrene	z		mg/kg	0.010	[A] < 0.010		[A] 1.5	[A] 12		[A] < 0.010	[A] 0.29		[A] < 0.010
Benzo[a]anthracene			mg/kg	0.010	[A] < 0.010		[A] 0.96	[A] 7.6		[A] < 0.010	[A] < 0.010		[A] < 0.010
Chrysene			mg/kg	0.010	[A] < 0.010		[A] 0.97	[A] 7.7		[A] < 0.010	[A] < 0.010		[A] < 0.010
Benzo[b]fluoranthene		2800	mg/kg	0.010	[A] < 0.010		[A] 1.1	(A) 10		[A] < 0.010	[A] < 0.010		[A] < 0.010
Benzo[k]fluoranthene	z	2800	mg/kg	0.010	[A] < 0.010		[A] 0.41	[A] 4.1		[A] < 0.010	[A] < 0.010		[A] < 0.010
Benzo[a]pyrene	Z	2800	mg/kg	0.010	[A] < 0.010		[A] 0.91	[A] 7.8		[A] < 0.010	[A] < 0.010		[A] < 0.010
Indeno(1,2,3-c,d)Pyrene	Z	2800	mg/kg	0.010	[A] < 0.010		[A] 0.54	[A] 5.9		[A] < 0.010	[A] < 0.010		[A] < 0.010
Dibenz(a,h)Anthracene	Z		mg/kg	0.010	[A] < 0.010		[A] < 0.010	[A] 1.1		[A] < 0.010	[A] < 0.010		[A] < 0.010
Benzo[g,h,i]perylene				0.010	[A] < 0.010		[A] 0.50	[A] 4.6		[A] < 0.010	[A] < 0.010		[A] < 0.010
Coronene				0.010	[A] < 0.010		[A] < 0.010	[A] < 0.010		[A] < 0.010	[A] < 0.010		[A] < 0.010
Total Of 17 PAH's	z		mg/kg	0.20	[A] < 0.20		[A] 9.8	[A] 85		[A] < 0.20	[A] 0.74		[A] < 0.20
PCB 28		2815	mg/kg	0.0010	[A] < 0.0010		[A] < 0.0010	[A] < 0.0010		[A] < 0.0010	[A] < 0.0010		[A] < 0.0010

Project, ১৭৪৪5 / 2 Monaghan Town Active Travel Development Site:

Client: 19.81		Chah	Chamtest Joh No	LVN	CYYDYCG	CKYOF CC	CHICKOR	CERCH CU	CARCA CO			To the second second second	The state of the s
					21.15	71.01.07	2110112	7446	24-12-4-2	20-13442	24.E	29-19442	23-13442
Quotation No.: Q20-19951		Chemtest Sample ID.:	st Samp	le 10::	1653336	1653337	1653338	1653339	1653340	1653341	1653342	1653343	1653344
		Clie	Client Sample ID.:	le ID.:	AA197907	AA197908	AA192927	AA205155	AA205157	AA205160	AA205162	AA205163	AA205164
		Sal	Sample Location:	cation:	BH01	BH01	BH02	TP01R	TP01R	TP02R	TP03R	TP03R	TP04R
			Sample Type:	Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
		Ţ	Top Depth (m):	lh (m):	0.50	1.00	1.00	09:0	2.50	2.00	1.40	2.30	0.70
	*****		Asbestos Lab:	s Lab:	DURHAM		DURHAM	DURHAM		DURHAM	DURHAM		DURHAM
Determinand	Accred.	SOP Units LOD	Juits	001				CONTRACTOR OF THE PARTY OF THE	100 000				A CONTRACTOR OF THE
PCB 52	Z	2815 mg/kg		0.0010	[A] < 0.0010		[A] < 0.0010	[A] < 0.0010		[A] < 0.0010	[A] < 0.0010		[A] < 0.0010
PCB 90+101	z	2815 m	2815 mg/kg 0.0010	.0010	[A] < 0.0010		[A] < 0.0010	[A] < 0.0010		[A] < 0.0010	[A] < 0.0010		[A] < 0.0010
PCB 118	z	2815 m	2815 mg/kg 0.0010	.0010	[A] < 0.0010		[A] < 0.0010	[A] < 0.0010		[A] < 0.0010	[A] < 0.0010		[A] < 0.0010
PCB 153	z	2815 m	2815 mg/kg 0.0010	.0010	[A] < 0.0010		[A] < 0.0010	[A] < 0.0010		[A] < 0.0010	[A] < 0.0010		[A] < 0.0010
PCB 138	Z	2815 mg/kg	g/kg 0	0.0010	[A] < 0.0010		[A] < 0.0010	[A] < 0.0010		[A] < 0.0010	[A] < 0.0010		[A] < 0.0010
PCB 180	Z	2815 m	2815 mg/kg 0.0010	.0010	[A] < 0.0010		[A] < 0.0010	[A] < 0.0010		[A] < 0.0010	[A] < 0.0010		[A] < 0.0010
Total PCBs (7 congeners)	2	2815 mg/kg	g/kg 0	0.0010	[A] < 0.0010		[A] < 0.0010	[A] < 0.0010		[A] < 0.0010	[A] < 0.0010		IA] < 0.0010
Total Phenols	n	2920 ma/ka	a/ka (0.10	< 0.10		< 0.10	< 0.10		< 0.10	A 0 10		< 0.10

Project: 24665 / 2 Monaghan Town Active Travel Development Site:

Client: Joor		5	emtest.	Chemtest Job No.:	23-19442	23-19442	23-19442	23-19422
Quotation No.: Q20-19951		Chem	est San	Chemtest Sample ID.:	1653345	1653346	1653347	1653348
		S	ient Sa	Client Sample ID.:	AA205167	AA205168	AA205169	AA205182
		0,	ample l	Sample Location:	TP05R	TP05R	TP07R	TP09R
			Samp	Sample Type:	SOIL	SOIL	SOIL	SOIL
			Top De	Top Depth (m):	0.50	1.50	06.0	09:0
			Asbes	Asbestos Lab:	DURHAM			DURHAM
Determinand	Accred.	SOP	Units	TOD				
ACM Type	n	2192		N/A	F			-
Asbestos Identification	Э	2192		N/A	No Asbestos Detected			No Asbestos Detected
Moisture	z	2030	%	0.020	13	14	15	14
pH (2.5:1)	z	2010		4.0		[A] 8.3	[A] 8.1	
Boron (Hot Water Soluble)	n	2120	mg/kg	0.40	[A] < 0.40			[A] 0.47
Magnesium (Water Soluble)	Z	2120	g/l	0.010		[A] < 0.010	[A] < 0.010	
Sulphate (2:1 Water Soluble) as SO4	D	2120	, g	0.010		[A] < 0.010	[A] < 0.010	
lotal Sulphur)	27/2	,0	0.010		[A] 0.093	/80'0 [v]	
Sulphur (clemental)		7100	mg/kg	2.5	(A) 2.4		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(A) 3.3
Mitrate (Mater Soluble)	⊃Įz	2220	5 5	0.010		(A) < 0.010	(A) < 0.010	
Cooldo (Total)	7	2220		010.0	2014.0	0.013	0.012	741 40 20
Cyanius (10tal) Subbide (Essilv Liberatable)	2		Gy/Gu	0.50	(A) 1.5			(A) < 0.30
Ammonium (Water Soluble)	-		2 2	20.0	7.	A D 04	< 0.01	<u>+</u>
Sulphate (Acid Soluble)	n	2430	. %	0.010	[A] 0.058	1A1 0.036	[A] 0.095	IA1 0.064
Arsenic	Ω	2455	mg/kg	0.5	3.3	•		5.8
Barium	n	2455	mg/kg	0	54			90
Cadmium	n	2455	mg/kg	0.10	< 0.10			< 0.10
Chromium	n	2455	mg/kg	0.5	14			19
Molybdenum	n		mg/kg	0.5	< 0.5			< 0.5
Antimony	z	2455	mg/kg	2.0	< 2.0			< 2.0
Copper	n		mg/kg	0.50	13			22
Mercury	n		mg/kg	0.05	60.0			0.32
Nickel	n		mg/kg	0.50	21			31
Lead	n		mg/kg	0.50	26			56
Selenium	Ω		mg/kg	0.25	< 0.25			< 0.25
Zinc	n	-	mg/kg	0.50	60			98
Chromium (Trivalent)	Ν		mg/kg	1.0	14			19
Chromium (Hexavalent)	2	2490	mg/kg	0.50	< 0.50			< 0.50
Organic Matter	Ð		%	0.40				
Mineral Oil (TPH Calculation)	z	2670	mg/kg	10	× 10			۰ 10
Aliphatic TPH >C5-C6	z	2680	mg/kg	1.0	[A] < 1.0			[A] < 1.0
Aliphatic TPH >C6-C8	z		mg/kg	1.0	[A] < 1.0			[A] < 1.0
Aliphatic TPH >C8-C10	N		mg/kg	1.0	[A] < 1.0	*****		[A] < 1.0
Aliphatic TPH >C10-C12	z		mg/kg	1.0	[A] < 1.0			[A] < 1.0
Aliphatic TPH >C12-C16	z	2680	mg/kg	0.1	[A] < 1.0			[A] < 1.0
Aliohatic TPH >C16-C21	z	2680	mg/kg	1.0	[A] < 1.0			[A] < 1.0

Project: 24665 / 2 Monaghan Town Active Travel Development Site:

Client: IGSL		W)	mtest	Chemtest Job No:	23.10442	23-19442	CF10142	22,104.12
Quotation No.: Q20-19951		Chemt	est San	Chemtest Sample ID.:	1653345	1653346	1653347	1653348
		ਹ	Client Sample ID.	nple ID.:	AA205167	AA205168	AA205169	AA205182
		S	ample L	Sample Location:	TP05R	TP05R	TP07R	TP09R
			Samp	Sample Type:	SOIL	SOIL	SOIL	SOIL
			Top De	op Depth (m):	0.50	1.50	0.90	09.0
			Asbes	Asbestos Lab:	DURHAM			DURHAM
Determinand	Accred.	SOP	Units	COD				
Aliphatic TPH >C21-C35	z	2680	mg/kg	1.0	[A] < 1.0			[A] < 1.0
Aliphatic TPH >C35-C44	z	2680	mg/kg	1.0	[A] < 1.0			[A] < 1.0
Total Aliphatic Hydrocarbons	z	2680	mg/kg	5.0	[A] < 5.0			[A] < 5.0
Aromatic TPH >C5-C7	z	2680	mg/kg	1.0	[A] < 1.0			[A] < 1.0
Aromatic TPH >C7-C8	z	2680	mg/kg	1.0	[A] < 1.0			[A] < 1.0
Aromatic TPH >C8-C10	z	2680	mg/kg	1.0	[A] < 1.0			[A] < 1.0
Aromatic TPH >C10-C12	z	2680	mg/kg	1.0	[A] < 1.0			[A] < 1.0
Aromatic TPH >C12-C16	z	2680	mg/kg	1.0	[A] < 1.0			[A] < 1.0
Aromatic TPH >C16-C21	z	2680	mg/kg	1.0	[A] 26			[A] < 1.0
Aromatic TPH >C21-C35	Z	2680	mg/kg	1.0	[A] 280			[A] < 1.0
Aromatic TPH >C35-C44	z	2680	mg/kg	1.0	[A] < 1.0			[A] < 1.0
Total Aromatic Hydrocarbons	N		mg/kg	5.0	[A] 310			[A] < 5.0
Total Petroleum Hydrocarbons	z		mg/kg	10.0	[A] 310			[A] < 10
Benzene	n	2760	µg/kg	1.0	[A] < 1.0			[A] < 1.0
Тоluene	n	2760	µg/kg ∣	1.0	[A] < 1.0			[A] < 1.0
Ethylbenzene	n	2760	µg/kg	1.0	[A] < 1.0			[A] < 1.0
m & p-Xylene	n	2760	µg/kg ∣	1.0	[A] < 1.0			[A] < 1.0
o-Xylene	n	2760	µg/kg ∣	1.0	[A] < 1.0			[A] < 1.0
Methyl Tert-Butyl Ether	n	2760	µg/kg	1.0	[A] < 1.0			[A] < 1.0
Naphthalene	Z		mg/kg	0.010	[A] 0.37			[A] < 0.010
Acenaphthylene	z	_	mg/kg	0.010	[A] 0.84			[A] < 0.010
Acenaphthene	z	2800	mg/kg	0.010	[A] 0.10		,	[A] < 0.010
Fluorene	z		mg/kg	0.010	[A] 0.42			[A] < 0.010
Phenanthrene		2800	mg/kg	0.010	[A] 3.5			[A] < 0.010
Anthracene		2800	mg/kg	0.010	[A] 2.0			[A] < 0.010
Fluoranthene	z		mg/kg	0.010	[A] 14			[A] < 0.010
Pyrene	z	2800	mg/kg	0.010	[A] 11			[A] < 0.010
Benzo[a]anthracene	-		mg/kg	0.010	[A] 7.2			[A] < 0.010
Chrysene		2800	mg/kg	0.010	[A] 6.1			[A] < 0.010
Benzo[b]fluoranthene		2800	mg/kg	0.010	[A] 7.8			[A] < 0.010
Benzo[kjfluoranthene	z	2800	mg/kg	0.010	[A] 3.1			[A] < 0.010
Benzo[a]pyrene	z	2800	mg/kg	0.010	[A] 6.6			[A] < 0.010
Indeno(1,2,3-c,d)Pyrene	Z	2800	mg/kg	0.010	[A] 4.0			[A] < 0.010
Dibenz(a,h)Anthracene	z	2800	mg/kg	0.010	[A] 0.85			[A] < 0.010
Benzo[g,h,]]perylene			mg/kg	0.010	[A] 3.0		-	[A] < 0.010
Coronene		2800	mg/kg	0.010	[A] < 0.010			[A] < 0.010
Total Of 17 PAH's	z	2800		0.20	[A] 71			[A] < 0.20
PCB 28	٦	2815	mg/kg	0.0010	[A] < 0.0010			[A] < 0.0010

Project: 24665 / 2 Monaghan Town Active Travel Development

	1	-	ť	
,	i	į	Ś	
1	ì	ï	:	
	ï		,	ļ

Client: IGSL		Ch	emtest.	Chemtest Job No.:	23-19442	23-19442	23-19442	23-19442
Quotation No.: Q20-19951		Chem	est San	Chemtest Sample ID.:	1653345	1653346	1653347	1653348
		C	lient Sar	Client Sample ID.:	AA205167	AA205168	AA205169	AA205182
		.0,	ample L	Sample Location:	TP05R	TP05R	TP07R	TP09R
			Samp	Sample Type:	SOIL	SOIL	SOIL	SOIL
			Top De	Fop Depth (m):	0.50	1.50	06:0	09:0
			Asbes	Asbestos Lab:	DURHAM			DURHAM
Determinand	Accred. SOP Units LOD	SOP	Units	TOD				
PCB 52	Z	2815	mg/kg	2815 mg/kg 0.0010	[A] < 0.0010			[A] < 0.0010
PCB 90+101	z	2815	mg/kg	2815 mg/kg 0.0010	[A] < 0.0010			[A] < 0.0010
PCB 118	z	2815	mg/kg	2815 mg/kg 0.0010	[A] < 0.0010			[A] < 0.0010
PCB 153	z	2815		mg/kg 0.0010	[A] < 0.0010			[A] < 0.0010
PCB 138	N	2815	mg/kg	mg/kg 0.0010	[A] < 0.0010			[A] < 0.0010
PCB 180	2	2815	mg/kg	2815 mg/kg 0.0010	[A] < 0.0010			[A] < 0.0010
Total PCBs (7 congeners)	z	2815	mg/kg	mg/kg 0.0010	[A] < 0.0010			[A] < 0.0010
Total Phenois	n	2920	2920 mg/kg 0.10	0.10	< 0.10			< 0.10

Project: 24665 / 2 Monaghan Town Active Travel Development Site

Chemtest Job No:	23-19442				Landfill	Landfill Waste Acceptance Criteria	e Criteria
Chemtest Sample ID:	1653336					Limits	
Sample Ref:						Stable, Non-	
Sample ID:	AA197907					reactive	
Sample Location:	BH01					hazardous	Hazardous
Top Depth(m):	0.50				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	Ω	%	[A] 2.0	3	5	9
Loss On Ignition	2610	ο	%	7.8	LE	-	10
Total BTEX	2760	n	mg/kg	[A] < 0.010	9		ţ
Total PCBs (7 congeners)	2815	2	mg/kg	[A] < 0.0010	1	-	j
TPH Total WAC	2670	n	mg/kg	[A] < 10	200		\$
Total Of 17 PAH's	2800	Z	mg/kg	[A] < 0.20	100	-	1
hd	2010	n		8.0	1	9<	-
Acid Neutralisation Capacity	2015	Z	mal/kg	0.0050		To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	Limit values for compliance leaching test	eaching test
			mg/l	mg/kg	using B.	using BS EN 12457 at L/S 10 I/kg	3 10 I/kg
Arsenic	1455	n	0.0003	0:00:0	0.5	2	25
Barium	1455	n	< 0.005	< 0.050	20	100	300
Cadmium	1455	Λ	< 0.00011	< 0.0011	0.04	Ļ	s,
Chromium	1455	n	< 0.0005	< 0.0050	0.5	10	70
Copper	1455	n	< 0.0005	< 0.0050	2	50	100
Mercury	1455	n	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455	n	0.0007	0.0073	0.5	10	30
Nickel	1455	n	< 0.0005	< 0.0050	0.4	10	40
Lead	1455	n	< 0.0005	< 0.0050	0.5	10	20
Antimony	1455	n	< 0.0005	< 0.0050	90:0	7.0	S
Selenium	1455	n	0.0010	6600.0	0.1	0.5	7
Zinc	1455	n	< 0.003	< 0.025	4	50	200
Chloride	1220	n	1.1	11	008	15000	25000
Fluoride	1220	n	0.092	< 1.0	10	150	200
Suphate	1220	n	3.1	31	1000	20000	20000
Total Dissolved Solids	1020	z	52	520	4000	00009	100000
Phenol Index	1920	כ	< 0.030	< 0.30	,	,	•
Dissolved Organic Carbon	1610	'n	3.4	< 50	500	800	1000
						200	1

Dry mass of test portion/kg	0.090
Moisture (%)	12

Waste Acceptance Criteria

Project: 24665 / 2 Monaghan Town Active Travel Development Site; . . _

Chemiest Job No:	23-19442				/ Illihue	l andfill Waste Accentance Criteria	Criteria
Chemtest Sample ID:	1653338					Limits	
Sample Ref:						Stable, Non-	
Sample ID:	AA192927					reactive	
Sample Location:	BH02					hazardous	Hazardous
Top Depth(m):	1.00				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	ח	%	[A] 3.5	3	2	9
Loss On Ignition	2610	n	%	4.0	-	3	10
Total BTEX	2760	n	mg/kg	[A] < 0.010	9	1	1
Total PCBs (7 congeners)	2815	z	mg/kg	[A] < 0.0010	L	-	-
TPH Total WAC	2670	n	mg/kg	[A] 670	200		-
Total Of 17 PAH's	2800	z	mg/kg	[A] 9.8	100		K
Hd	2010	n		8.0	-	9<	ı
Acid Neutralisation Capacity	2015	z	mol/kg	0.016	1	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	Limit values for compliance leaching test	eaching test
			mg/l	mg/kg	using B:	using BS EN 12457 at L/S 10 l/kg	10 l/kg
Arsenic	1455	n	0.0020	0.020	0.5	2	25
Barium	1455	n	0.006	0.061	20	100	300
Cadmium	1455	n	< 0.00011	< 0.0011	0.04	l	5
Chromium	1455	n	< 0.0005	< 0.0050	0.5	10	70
Copper	1455	n	0.0019	0.019	2	920	100
Mercury	1455	n	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455	n	0.0027	0.027	0.5	10	30
Nickel	1455	ב	0.0006	0.0063	0.4	10	40
Lead	1455	כ	< 0.0005	< 0.0050	0.5	10	50
Antimony	1455	D	0.0007	0.0067	90.0	0.7	5
Selenium	1455	ם	0.0010	0.010	0.1	0.5	7
Zinc	1455	ח	0.005	0.052	4	50	200
Chloride	1220	n	1.4	14	800	15000	25000
Fluoride	1220	n	0.083	< 1.0	10	150	200
Sulphate	1220	ח	20	200	1000	20000	20000
Total Dissolved Solids	1020	z	62	620	4000	00009	100000
Phenol Index	1920	ם	< 0.030	< 0.30	-	•	
Dissolved Organic Carbon	1610	ם	3.5	< 50	500	800	1000

Dry mass of test portion/kg 0.090 Moisture (%) 8.7	Solid Information	
Moisture (%)	Dry mass of test portion/kg	060.0
	Moisture (%)	8.7

Waste Acceptance Criteria

Project: 24665 / 2 Monaghan Town Active Travel Development Site.

Chemtest Job No:	23-19442				I andfill V	I andfill Waste Accentance Criferia	Critoria
Chemtest Sample ID:	1653339					Limits	
Sample Ref:						Stable, Non-	
Sample ID:	AA205155					reactive	
Sample Location:	TP01R					hazardous	Hazardous
Top Depth(m):	09.0				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	n	%	[A] 5.3	3	5	9
Loss On Ignition	2610	n	%	9.5	,	-	10
Total BTEX	2760	n	mg/kg	[A] < 0.010	9	ı	L
Total PCBs (7 congeners)	2815	Z	mg/kg	[A] < 0.0010	1	-	1
TPH Total WAC	2670	n	mg/kg	[A] 800	200		1
Total Of 17 PAH's	2800	z	mg/kg	, [A] 85	100		1
Hd	2010	n		7.4	1	9<	1
Acid Neutralisation Capacity	2015	z	mol/kg	0.018		To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	Limit values for compliance leaching test	eaching test
			l/gm	mg/kg	using B	using BS EN 12457 at L/S 10 I/kg	10 l/kg
Arsenic	1455	n	9000'0	0.0061	0.5	2	25
Barium	1455	n	0.027	0.27	20	100	300
Cadmium	1455	ח	< 0.00011	< 0.0011	0.04		5
Chromium	1455	n	< 0.0005	< 0.0050	0.5	10	20
Copper	1455	n	0.0035	0.035	2	20	100
Mercury	1455	n	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455	n	0.0017	0.017	0.5	10	30
Nickel	1455	n	0.0010	0.010	0.4	10	40
Lead	1455	ñ	9000.0	0.0056	0.5	10	20
Antimony	1455	n	< 0.0005	< 0.0050	90.0	0.7	5
Selenium	1455	U	0.0005	0.0050	0.1	0.5	7
Zinc	1455	n	0.007	0.071	4	50	200
Chloride	1220	n	8.0	80	800	15000	25000
Fluoride	1220	n	0.094	< 1.0	10	150	200
Sulphate	1220	n	110	1100	1000	20000	20000
Total Dissolved Solids	1020	Z	220	2200	4000	00009	100000
Phenol Index	1920	n	< 0.030	< 0.30	-	1	,
Dissolved Organic Carbon	1610	n	8.5	85	500	800	1000

Dry mass of test portion/kg 0.090 Moisture (%) 17		
Moisture (%)	ry mass of test portion/kg	0.090
	loisture (%)	17

Waste Acceptance Criteria

Project: 24665 / 2 Monaghan Town Active Travel Development Site

Net 165341 165341 165341 165341 165341 166341 165341 165341 165341 17 PdF 17 PdF 1455	Accred.	Units % % mg/kg mg/kg mg/kg mg/kg	[A] 1.2 4.0 [A] < 0.010 [A] < 0.0010 [A] < 2.00 [A] < 0.20	Inert Waste Landfill 3 3 6 6 6 500 100	Limits Stable, Non- reactive hazardous waste in non- hazardous Landfill	Hazardous Waste Landfill 6 6 10
AA205160	Accred.	Units % % mg/kg mg/kg mg/kg mg/kg	[A] 1.2 4.0 [A] < 0.010 [A] < 0.0010 [A] < 0.0010 [A] < 0.0010	inert Waste Landfill 3 3 6 6 6 1 1	Stable, Non- reactive hazardous waste in non- hazardous Landfill 5	Hazardous Waste Landfill 6 6
AA205160	Accred.	Units % % mg/kg mg/kg mg/kg mg/kg	(A) 1.2 4.0 (A) < 0.010 (A) < 0.0010 (A) 220 (A) < 0.20	Inert Waste Landfill 3 3 6 6 6 500 100	reactive hazardous waste in non- hazardous Landfill 5	Hazardous Waste Landfill 10
betth(m): m Depth(m): m Depth(m): ling Date: minand Organic Carbon Organic Carbon Organic Carbon Sep Consist of the carbon Organic Carbon Organic Carbon Organic Carbon Sep Sep Sep Sep Sep Sep Sep Se	Accred.	Units % % mg/kg mg/kg mg/kg mg/kg	(A) 1.2 4.0 (A) < 0.010 (A) < 0.0010 (A) 220 (A) < 0.20	inert Waste Landfill 3 3 6 6 6 500 100	hazardous waste in non- hazardous Landfill 5	Hazardous Waste Landfill 6 10
m Depth(m): 2.00 ining Date: SOP minand 2625 Organic Carbon 2610 Organic Carbon 2610 BTEX 2760 PCBs (7 congeners) 2815 PCBs (7 congeners) 2815 PCBs (7 congeners) 2810 PCBs (7 congeners) 2815 PCBs (8 congeners) 2810 PCBs (8 congeners) 2815	Accred.	Units % % mg/kg mg/kg mg/kg mg/kg	(A) 1.2 4.0 (A) < 0.010 (A) < 0.0010 (A) 220 (A) < 0.20	Inert Waste Landfill 3 50 500 100	waste in non- hazardous Landfill 5	Waste Landfill 6 6 10 10 10 10 10 10 10 10 10 10 10 10 10
In Depth(m): Month Depth (m): Ining Date: SOP Iminand SOP Organic Carbon 2610 On Ignition 2760 PCBs (7 congeners) 2815 PCBs (7 congeners) 2800 PCBs (7 congeners) 2800 Of 17 PAH's 2800 Cot 17 PAH's 2010 Vol 17 PAH's 1455 In Initialization Capacity 1455 Initialization 1455 <td>Accred.</td> <td>Units % % mg/kg mg/kg mg/kg mg/kg mg/kg</td> <td>[A] 1.2 4.0 [A] < 0.010 [A] < 0.0010 [A] 220 [A] 220 [A] 220</td> <td>3 3 6 6 500 100</td> <td>Landfill 5</td> <td>6 6 10 10 10 10 10 10 10 10 10 10 10 10 10</td>	Accred.	Units % % mg/kg mg/kg mg/kg mg/kg mg/kg	[A] 1.2 4.0 [A] < 0.010 [A] < 0.0010 [A] 220 [A] 220 [A] 220	3 3 6 6 500 100	Landfill 5	6 6 10 10 10 10 10 10 10 10 10 10 10 10 10
Ining Date: SOP Iminand SOP Organic Carbon 2625 On Ignition 2610 BTEX 2760 BTEX 2800 Cot 17 PAH's 2815 Folal WAC 2800 Of 17 PAH's 2800 Folal WAC 2010 Cot 17 PAH's 2015 Inim 1455	Accred.	Units % % mg/kg mg/kg mg/kg mg/kg	[A] 1.2 4.0 [A] < 0.010 [A] < 0.0010 [A] 220 [A] 220 [A] < 0.20	3 	Landfill	9 110
minand SOP Organic Carbon 2625 On Ignition 2610 BTEX 2610 BTEX 2815 Cols (Congeners) 2815 Folal WAC 2810 Of 17 PAH's 2010 Cols (Congeners) 2670 Cols (Congeners) 2670 Cols (Congeners) 2010 Cols (Congeners) 2010 Cols (Congeners) 2675 In (Congeners) 1455 In (Con	Accred.	Units % % mg/kg mg/kg mg/kg mg/kg	[A] 1.2 4.0 [A] < 0.010 [A] < 0.0010 [A] 220 [A] 220 [A] < 0.20	3 6 6 500 100	ן וווע	9 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Organic Carbon On Ignition BTEX PCBs (7 congeners) PCBs (7 congeners) Fotal WAC Of 17 PAH's Fotal WAC Fota	J J J Z J Z J Z	% mg/kg mg/kg mg/kg mg/kg	[A] 1.2 4.0 [A] < 0.010 [A] < 0.0010 [A] 220 [A] 220 [A] < 0.20	3 6 1 500 100	נון וון	9 1 1 1 1 1
On Ignition BTEX PCBs (7 congeners) Fotal WAC Of 17 PAH's e Analysis in in in ilium ilium ilium only denum denum denum denum denum denum denum	J D Z D Z D Z	% mg/kg mg/kg mg/kg mg/kg	4.0 [A] < 0.010 [A] < 0.0010 [A] 220 [A] < 0.20	6 6 1 500 100		10
BTEX PCBs (7 congeners) fotal WAC Of 17 PAH's e Analysis it	> Z	mg/kg mg/kg mg/kg mg/kg	[A] < 0.010 [A] < 0.0010 [A] 220 [A] < 0.20	6 1 500 100	1 1	
PCBs (7 congeners) folal WAC Of 17 PAH's Of 17 PAH's e Analysis ic in ium ium oium denum oiny ium denum de	Z ⊃ Z ⊃ 2	mg/kg mg/kg mg/kg	[A] < 0.0010 [A] 220 [A] < 0.20	1 500 100	1 1	
Fotal WAC Of 17 PAH's Of 17 PAH's Veutralisation Capacity E Analysis In I	⊃ z ⊃ z	mg/kg mg/kg	[A] 220 [A] < 0.20	500 100	-	
Of 17 PAH's Veutralisation Capacity E Analysis It in it in hium Adenum Only Ium Only Outh	Z ⊃ Z	mg/kg	[A] < 0.20	100	1	1
e Analysis e Analysis it	⊃ 2		7.0			
e Analysis e Analysis ic nium nium sr ry denum ony ium	Z		(.5	-	9<	
e Analysis ic n ium hium ar ir ir denum denum denum denum denum	_	mol/kg	0.015	1	To evaluate	lo evaluate
ic milum str. denum denum ony ium de		10:1 Eluate	10:1 Eluate	Limit values	Limit values for compliance leaching test	eaching test
ic nium nium er iny denum denum ony ium		l/bu	mg/kg	using B	using BS EN 12457 at L/S 10 l/kg	10 l/kg
ium ium erum denum ony ium	Ð	0.0019	0.019	0.5	2	25
ium sr Iny denum ony ium	1	600.0	0.087	20	100	300
nium er denum denum ony ium	n	< 0.00011	< 0.0011	0.04	Į	2
iry denum ony ium de)	< 0.0005	< 0.0050	0.5	10	70
denum J ony ium de	-	0.0010	0.0098	2	99	100
denum ony lum de	ר	< 0.00005	< 0.00050	0.01	0.2	2
ony lum de	n n	0.0014	0.014	0.5	01	30
ony lum de	n	< 0.0005	< 0.0050	0.4	01	40
ony lum de	n	< 0.0005	< 0.0050	0.5	10	50
lum de	⊋	< 0.0005	< 0.0050	0.06	0.7	5
- p	⊃	< 0.0005	< 0.0050	0.1	0.5	7
	n	0.003	0:030	4	20	200
	n	< 1.0	< 10	800	15000	25000
Fluoride 1220	n	0.080	< 1.0	10	150	500
	n	37	370	1000	20000	20000
ed Solids	Z	94	910	4000	00009	100000
	n	< 0.030	< 0.30	-	ł	-
Dissolved Organic Carbon 1610		3.0	< 50	500	800	1000

Solid illigitori	
윤	0:030
Moisture (%)	18

Waste Acceptance Criteria

Project: 24665 / 2 Monaghan Town Active Travel Development Site.

Chemtest Job No:	23-19442				Landfill	Landfili Waste Acceptance Criteria	e Criteria
Chemtest Sample ID:	1653342					Limits	
Sample Ref:						Stable, Non-	
Sample ID:	AA205162					reactive	
Sample Location:	TP03R					hazardous	Hazardous
Top Depth(m):	1.40				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	n	%	[A] 2.2	3	2	9
Loss On Ignition	2610	n	%	6.7		;	10
Total BTEX	2760	n	mg/kg	[A] < 0.010	9	1	1
Total PCBs (7 congeners)	2815	Z	mg/kg	[A] < 0.0010	ļ	-	1
TPH Total WAC	2670	n	mg/kg	[A] 140	500	-	1
Total Of 17 PAH's	2800	Z	mg/kg	[A] 0.74	100		-
Hd	2010	n		7.8		9<	
Acid Neutralisation Capacity	2015	z	mol/kg	0.013	:	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	Limit values for compliance leaching test	eaching test
			mg/l	mg/kg	using B	using BS EN 12457 at L/S 10 l/kg	10 l/kg
Arsenic	1455	ภ	0.0005	0.0050	0.5	2	25
Barium	1455	Ŋ	0.008	0.085	20	100	300
Cadmium	1455	ח	< 0.00011	< 0.0011	0.04	-	5
Chromium	1455	Û	< 0.0005	< 0.0050	0.5	10	70
Copper	1455	n	0.0010	0.0097	2	20	100
Mercury	1455	n	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455	n	0.0010	0.011	0.5	-10	30
Nickel	1455	n	0.0006	0.0062	0.4	10	40
Lead	1455	ם	< 0.0005	< 0.0050	0.5	-10	50
Antimony	1455	'n	< 0.0005	< 0.0050	90.0	0.7	5
Selenium	1455	n	< 0.0005	< 0.0050	0.1	0.5	7
Zinc	1455	Ω	0,004	0.044	4	20	200
Chloride	1220	n	< 1.0	< 10	800	15000	25000
Fluoride	1220	n	0.088	< 1.0	10	150	500
Sulphate	1220	n	13	130	1000	20000	50000
Total Dissolved Solids	1020	Z	59	590	4000	00009	100000
Phenol Index	1920	D.	< 0.030	< 0.30	,	L	•
Dissolved Organic Carbon	1610	n	< 2.5	< 50	200	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	17

Waste Acceptance Criteria

Project: 24665 / 2 Monaghan Town Active Travel Development Site:

Charles Coo No.	77447				Landfill	Landfill Waste Acceptance Criteria	e Criteria
Chemtest Sample ID:	1653344					Limits	
Sample Ref:						Stable, Non-	
Sample ID:	AA205164					reactive	
Sample Location:	TP04R					hazardous	Hazardous
Top Depth(π):	0.70				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	n I	%	[A] 2.6	£	5	9
Loss On Ignition	2610	ñ	%	6.4		1	10
Total BTEX	2760	n	mg/kg	[A] < 0.010	9	1	1
Total PCBs (7 congeners)	2815	Z	mg/kg	[A] < 0.0010	Ţ	7	I
TPH Total WAC	2670	n	mg/kg	[A] < 10	500	-	1
Total Of 17 PAH's	2800	Z	mg/kg	[A] < 0.20	100	;	1
Нd	2010	n		8.3	1	ģ	
Acid Neutralisation Capacity	2015	2	mol/kg	0.021	-	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	Limit values for compliance leaching test	eaching test
			mg/i	mg/kg	using B	S EN 12457 at L/S	10 l/kg
Arsenic	1455	Π	< 0.0002	< 0.0020	6.0	2	25
Barlum	1455	n	< 0.005	< 0.050	20	100	300
Cadmium	1455	n	< 0.00011	< 0.0011	0.04	-	ည
Chromium	1455	n	< 0.0005	< 0.0050	5'0	10	70
Copper	1455	n	< 0.0005	< 0.0050	2	20	100
Mercury	1455	n	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455	n	0.0007	0.0070	0.5	10	30
Nickel	1455	n	< 0.0005	< 0.0050	0.4	0,	40
Lead	1455	n	< 0.0005	< 0.0050	0.5	0.1	20
Antimony	1455	n	< 0.0005	< 0.0050	0.06	2.0	5
Selenium	1455)	0.0005	0.0054	0.1	9.0	7
Zinc	1455	Ð	< 0.003	< 0.025	4	09	200
Chloride	1220	n	< 1.0	< 10	800	15000	25000
Fluoride	1220	ภ	0.14	1,4	10	150	200
Sulphate	1220	n	< 1.0	< 10	1000	2000	20000
Total Dissolved Solids	1020	Z	33	320	4000	00009	100000
Phenol Index	1920	Ω	< 0.030	< 0.30	1	_	•
	4,00		0.0	01.	004	000	

Dry mass of test portion/kg 0.090 Moisture (%) 14	Solid Information	
1	Dry mass of test portion/kg	060'0
	Moisture (%)	14

Waste Acceptance Criteria

Results - Single Stage WAC

Project: 24665 / 2 Monaghan Town Active Travel Development Site

Chemtest Job No:	23-19442				Landfill	Landfill Waste Acceptance Criteria	e Criteria
Chemtest Sample ID:	1653345					Limits	
Sample Ref:						Stable, Non-	
Sample ID:	AA205167					reactive	
Sample Location:	TP05R					hazardous	Hazardous
Top Depth(m):	0.50				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	n	%	[A] 3.2	3	2	9
Loss On Ignition	2610	n	%	3.1		ı	10
Total BTEX	2760	n	mg/kg	[A] < 0.010	9	1	1
Total PCBs (7 congeners)	2815	z	mg/kg	[A] < 0.0010	1	1	1
TPH Total WAC	2670	Ð	mg/kg	[A] 240	200	1	1
Total Of 17 PAH's	2800	z	mg/kg	[A] 7.1	100	1	1
PH	2010	ב		8.2	-	9<	
Acid Neutralisation Capacity	2015	z	mol/kg	0.019	••	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	Limit values for compliance leaching test	eaching test
			mg/l	mg/kg	using B	using BS EN 12457 at L/S 10 l/kg	10 l/kg
Arsenic	1455	כ	0.0005	0.0051	0.5	2	25
Barium	1455	ח	< 0.005	< 0.050	20	100	300
Cadmium	1455	כ	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455	n	< 0.0005	< 0.0050	0.5	10	70
Copper	1455	n	0.0017	0.017	2	50	100
Mercury	1455	n	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455	n	0.0013	0.013	0.5	10	30
Nickel	1455	n	0.0005	0.0053	0.4	10	40
Lead	1455	n	0.0009	0.0088	0.5	10	20
Antimony	1455	ח	< 0.0005	< 0.0050	90.0	0.7	5
Selenium	1455	U	< 0.0005	< 0.0050	0.1	0.5	7
Zinc	1455	n	0.005	0.052	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	ח	0.12	1.2	10	150	200
Sulphate	1220	כ	< 1.0	< 10	1000	20000	20000
Total Dissolved Solids	1020	z	42	420	4000	00009	100000
Phenol Index	1920	כ	< 0.030	< 0.30	1		F
Dissolved Organic Carbon	1610	D	4.4	< 50	500	800	1000

Dry mass of test portion/kg	0.090
Moieture (%)	13

Waste Acceptance Criteria

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Deviations

In accordance with UKAS Policy on Deviating Samples TPS 63. Chemtest have a procedure to ensure 'upon receipt of each sample a competent laboratory shall assess whether the sample is suitable with regard to the requested test(s)'. This policy and the respective holding times applied, can be supplied upon request. The reason a sample is declared as deviating is detailed below. Where applicable the analysis remains UKAS/MCERTs accredited but the results may be compromised.

Sample:	Sample Ref:	Sample ID:	Sample Location:	Sampled Date:	Deviation Code(s):	Containers Received:
1653336		AA197907	BH01		A	Amber Glass 250ml
1653336		AA197907	BH01		A	Plastic Tub 500g
1653337		AA197908	BH01		A	Amber Glass 250ml
1653337		AA197908	BH01		А	Plastic Tub 500g
1653338		AA192927	BH02		A	Amber Glass 250ml
1653338		AA192927	BH02		А	Plastic Tub 500g
1653339		AA205155	TP01R		A	Amber Glass 250ml
1653339		AA205155	TP01R		А	Plastic Tub 500g
1653340		AA205157	TP01R		A	Amber Glass 250ml
1653340		AA205157	TP01R		А	Plastic Tub 500g
1653341		AA205160	TP02R		A	Amber Glass 250ml
1653341		AA205160	TP02R		А	Plastic Tub 500g
1653342		AA205162	TP03R		А	Amber Glass 250ml
1653342		AA205162	TP03R		А	Plastic Tub 500g
1653343		AA205163	TP03R		А	Amber Glass 250ml
1653343		AA205163	TP03R		А	Plastic Tub 500g
1653344		AA205164	TP04R		А	Amber Glass 250ml
1653344		AA205164	TP04R		А	Plastic Tub 500g
1653345		AA205167	TP05R		А	Amber Glass 250ml
1653345		AA205167	TP05R		А	Plastic Tub 500g
1653346		AA205168	TP05R		А	Amber Glass 250ml
1653346		AA205168	TP05R		А	Plastic Tub 500g

Deviations

In accordance with UKAS Policy on Deviating Samples TPS 63. Chemtest have a procedure to ensure 'upon receipt of each sample a competent laboratory shall assess whether the sample is suitable with regard to the requested test(s)'. This policy and the respective holding times applied, can be supplied upon request. The reason a sample is declared as deviating is detailed below. Where applicable the analysis remains UKAS/MCERTs accredited but the results may be compromised.

Sample:	Sample Ref:	Sample ID:	Sample Location:	Sampled Date:	Deviation Code(s):	Containers Received:
1653347		AA205169	TP07R		А	Amber Glass 250ml
1653347		AA205169	TP07R		А	Plastic Tub 500g
1653348		AA205182	TP09R		А	Amber Glass 250ml
1653348		AA205182	TP09R		Α	Plastic Tub 500g

Test Methods

SOP	Title	Parameters included	Method summary
1010	pH Value of Waters	рН	pH Meter
1020	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Conductivity Meter
1220	Anlons, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.
1455	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	determination by inductively coupled plasma
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation
1800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Waters by GC-MS	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Pentane extraction / GCMS detection
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.
2010	pH Value of Soils	pH	pH Meter
2015	Acid Neutralisation Capacity	Acid Reserve	Titration
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2175	Total Sulphur in Soils	Total Sulphur	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2180	Sulphur (Elemental) in Soils by HPLC	Sulphur	Dichloromethane extraction / HPLC with UV detection
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2220	Water soluble Chloride in Soils	Chloride	Aqueous extraction and measuremernt by 'Aquakem 600' Discrete Analyser using ferric nitrate / mercuric thiocyanate.
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2325	Sulphide in Soils	Sulphide	Steam distillation with sulphuric acid / analysis by 'Aquakem 600' Discrete Analyser, using N,N–dimethyl-p-phenylenediamine.
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.
2455	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.

Test Methods

SOP	Title	Parameters included	Method summary
2610	Loss on Ignition	loss on ignition (LOI)	Determination of the proportion by mass that is lost from a soil by ignition at 550°C.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3-band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID
2680	TPH A/A Split	Aliphatics: >C5-C6, >C6-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44Aromatics: >C5-C7, >C7-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44	Dichloromethane extraction / GCxGC FID detection
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-MS	Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene*	Dichloromethane extraction / GC-MS
2815	Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS	ICES7 PCB congeners	Acetone/Hexane extraction / GC-MS
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.
640	Characterisation of Waste (Leaching C10)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge

Report Information

Key	
U	UKAS accredited
М	MCERTS and UKAS accredited
N	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
SOP	Standard operating procedure
LOD	Limit of detection
	Comments or interpretations are beyond the scope of LIKAS accreditation

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

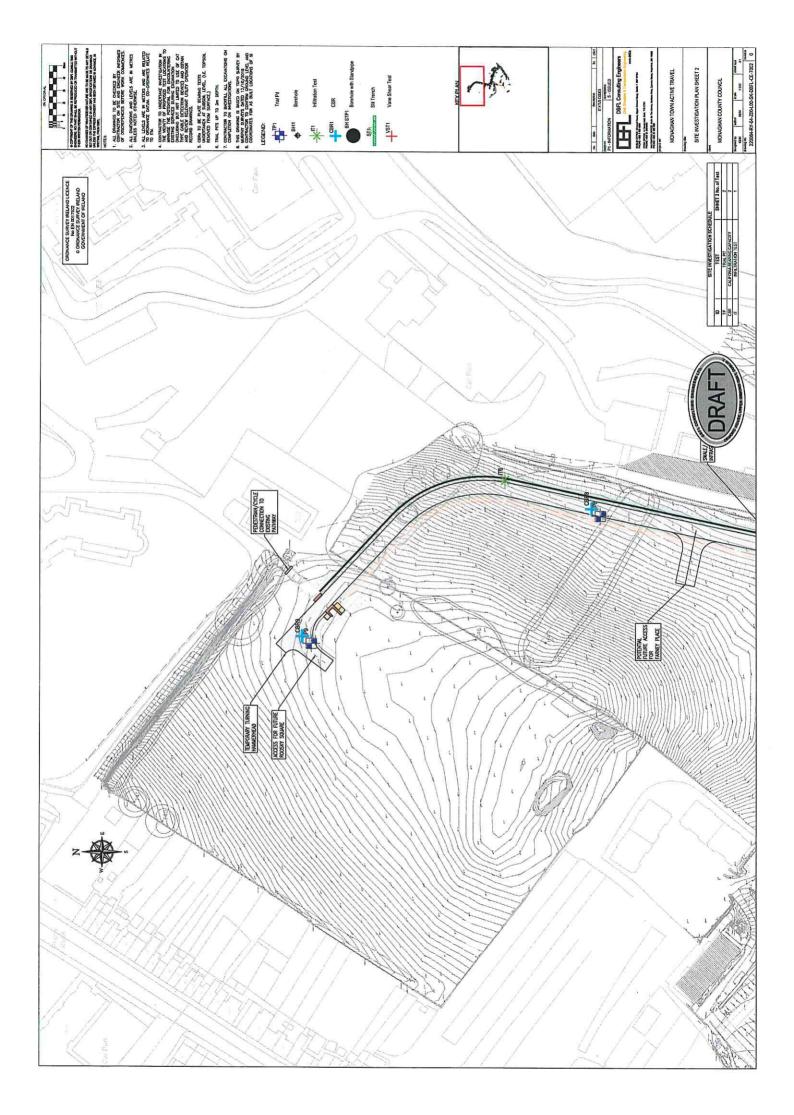
All Asbestos testing is performed at the indicated laboratory

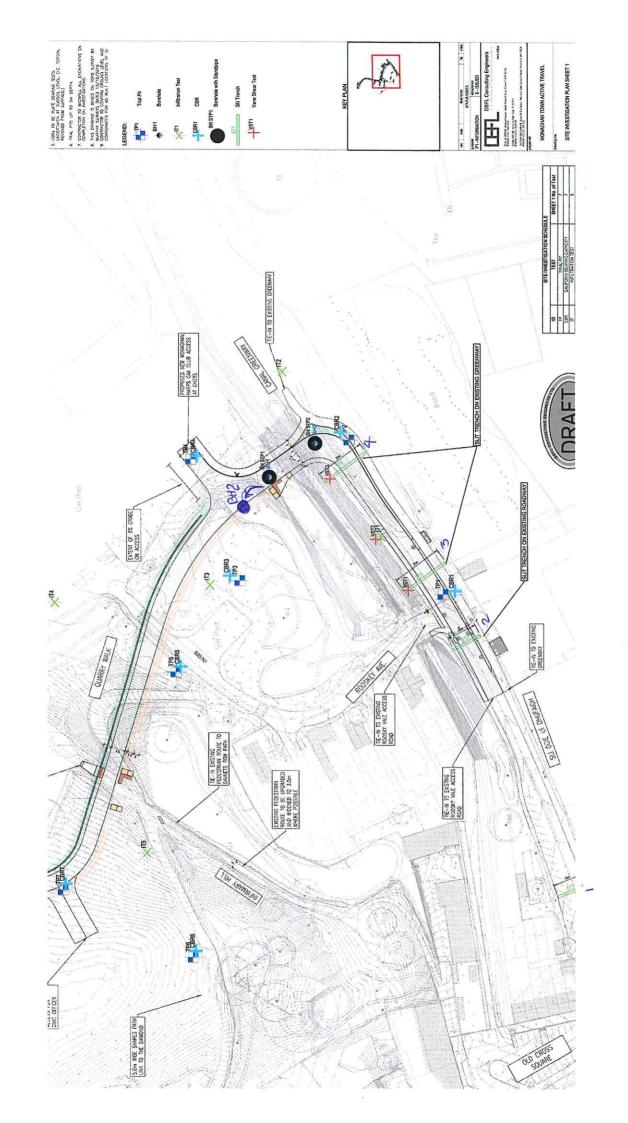
Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal


All soil samples will be retained for a period of 30 days from the date of receipt


All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

5

https://www.google.com/maps/@54.248585,-6.9626695,297m/data=!3m1!1e3?entry=ttu

APPENDIX B - SCREENING CRITERIA

				Sample ID	TP01	TP01	TP02	TP02	TP03	TP03	TP04	TP04	TP06	TP07	TP07	TP07	TP05	TP05	TP08	TP09	TP010	BH01	BH02	BH02	BH03	BH03
				Depth (m)	0.25	1.00	0.50	2.00	0.25	0.50	0.25	0.50	0.50	0.25	1.00	1.50	0.50	1.00	0.50	0.50	0.50	0.50	0.50	1.00	0.50	1.00
		Strat	tum (see report for fu		Made Ground	Silt	Made Ground	Made Ground	Topsoil	Made Ground	Made Ground	Silt	Made Ground	Clay	Made Ground	Made Ground	Clay	Clay	Clay	Clay	Made Ground	Clay				
	Analyte	Units	GAC Source	Sample Date GAC	09/08/2024	09/08/2024	09/08/2024	09/08/2024	08/08/2024	08/08/2024	08/08/2024	08/08/2024	08/08/2024	08/08/2024	08/08/2024	08/08/2024	13/08/2024	13/08/2024	13/08/2024	13/08/2024	13/08/2024	30/07/2024	31/07/2024	31/07/2024	29/07/2024	29/07/2
Preparation	Moisture Content	%	- GAC Source	- GAC	19	18	11	11	6.6	14	18	16	9.2	9.3	9.4	11	9.1	14	15	24	17	17	10	9.8	11	13
	Asbestos	-	HSE	Presence	NAD	Amosite	NAD	Chrysotile fibres	NAD	NAD	NAD	NAD	NAD	NAD	NAD	NAD	NAD									
	pH	pH units	-	-	7.8	7.8	8.5	8.5	8.6	8.4	7.9	8	8.6	8.1	8.3	8.6	8.7	10	8.2	8	9.7	7.7	8.8	8.6	8.3	8.9
	Total Cyanide	mg/kg	SAC	500	0.3	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.3	0.1	< 0.1	0.4	0.2	0.1	0.4	0.1	0.2	0.3	1.5	0.3	< 0.1	< 0.1	0.1	< 0.:
	Free Cyanide Thiocyanate as SCN	mg/kg mg/kg	SAC	30	0.4	0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.3	0.1	< 0.1	0.2	0.1	< 0.1	0.2	0.1	0.2	0.4	0.3	0.1	< 0.1	< 0.1	< 0.1	< 0.:
	Thiocyanate	mg/kg		-	1.1	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6	0.9	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6	1.8	< 0.6	0.6	2.5	2.1	3.7	< 0.6	< 0.6	< 0.6	< 0.
Inorganics	Total Sulphate as SO4	%		ļ	0.07 < 10	0.04 < 10	0.05	0.04	0.02 < 10	0.04	0.05	0.02 < 10	0.04	0.06	0.06 < 10	0.04	0.07	0.08	0.06	0.1	0.12	0.04	0.06	0.05	0.05	0.0
	Sulphide Total Chloride	mg/kg mg/kg	- 	ļ <u>-</u>	33.2	36.9	26.1	20	22.1	16 24.9	18.8	26	24 57.3	12 17.7	36.8	29.1	16 30.8	24 60.7	29	20	24 32.7	20.2	24 32.6	36 46.5	44 27.5	40 34.3
	Organic Matter (automated)	%		-	3.1	1.7	0.4	0.9	0.5	1.2	2.7	0.9	0.6	1.4	1.5	0.5	1.8	1.1	1.7	4.5	6.3	< 0.1	0.2	< 0.1	3.4	0.5
	Alkali Reserve	g/100g NaOH	-	-	< 1.0	< 1.0	1.1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	5.8	18	12	< 1.
	Acid Neutralisation Capacity (pH4)	moles/kg	-	-	< 1.0	1.7	3.2	2.6	< 1.0	2.6	< 1.0	< 1.0	4.2	< 1.0	3.5	3.8	< 1.0	1.6	1.6	1.6	1.8	< 1.0	< 1.0	< 1.0	4	< 1.
	Water Soluble Nitrate (2:1) as NO3	mg/kg	-	-	8.6	13	2.5	2.8	3.6	5.1	8.3	3.9	7.1	2.8	4.3	2.4	24	79	25	13	66	17	20	12	1.2	3.9
	Antimony Arsenic	mg/kg mg/kg	S4UL	37	7.7	7.1	5.5	5.5	6.7	6.1	13	7.2	4.6	9.7	5.9	5.4	11	9.5	8.2	7.2	35	5.6	3.4	3.7	3.9	4.5
	Barium	mg/kg	-	-										ļ	<u> </u>	<u> </u>						<u> </u>	<u> </u>		-	1
	Beryllium Boron (water soluble)	mg/kg mg/kg	S4UL S4UL	1.7 290	0.6	< 0.2	0.3	0.2	< 0.2	0.3	0.4	0.2	0.2	0.2	0.3	0.2	0.6	0.3	0.5	<u>-</u>	0.6	< 0.2	< 0.2	0.2	0.4	0.3
	Cadmium	mg/kg	S4UL	11	0.5	0.4	0.2	0.2	< 0.1	0.3	0.4	0.3	0.3	0.9	0.4	0.3	0.2	0.6	0.4	0.5	0.7	0.3	0.2	0.2	0.2	0.2
	Chromium (hexavalent)	mg/kg	S4UL	6	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	1.5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.
Metals	Chromium (III) Chromium	mg/kg mg/kg	S4UL -	910	- 24	32	23	- 24	50	30	- 28 -	24	16	- 28	25	- 33	35 -	32	- 28	- 24	- 43	56 -	19	- 17	- 29	33
	Copper	mg/kg	S4UL	2400	20	25	19	20	33	23	38	25	15	36	27	26	41	25	38	41	130	56	13	12	26	28
	Lead	mg/kg mg/kg	C4SL S4UL	200 40	55 0.16	14 < 0.05	16 0.16	22 0.16	15 < 0.05	17 0.06	64 0.3	16 0.08	11 < 0.05	180 0.42	65 0.15	39 < 0.05	520 0.13	29 0.1	110 0.27	41 0.28	300 0.68	28 0.11	11 < 0.05	9 < 0.05	11	27 < 0.0
	Mercury Molybdenum	mg/kg mg/kg	34UL -	- 40	0.10	\ U.U5	- 0.10	- 0.10	- 0.05			- 0.08	- 0.05	- 0.42	- 0.15	- 0.05	- 0.13		- 0.2/	0.28	- 0.08		< 0.05	- 0.05	- U.U5	- 0.0
	Nickel	mg/kg	S4UL	180	28	43	33	34	62	38	33	35	23	36	29	39	45	40	35	27	66	53	23	20	38	43
	Selenium Vanadium	mg/kg mg/kg	S4UL S4UL	250 410	< 0.5 26	< 0.5 29	< 0.5 22	< 0.5 23	< 0.5	< 0.5 27	< 0.5 33	< 0.5 24	< 0.5 15	< 0.5 31	< 0.5 28	< 0.5 36	< 0.5 26	< 0.5 33	< 0.5 29	0.6 26	< 0.5 70	< 0.5 39	< 0.5 18	< 0.5 16	< 0.5 26	< 0. 28
	Zinc	mg/kg	S4UL	3700	71	55	46	55	70	64	89	61	41	250	99	65	120	83	100	85	330	94	69	46	58	61
	Naphthalene	mg/kg	S4UL	2.3	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.0
	Acenaphthylene Acenaphthene	mg/kg mg/kg	S4UL S4UL	170 210	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	0.16	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.0
	Fluorene	mg/kg	S4UL	170	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	0.15	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.0
	Phenanthrene Anthracene	mg/kg mg/kg	S4UL S4UL	95 2400	0.1	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	0.08	0.06	< 0.03	0.11 < 0.03	< 0.03	0.76	< 0.03	0.08	< 0.03	< 0.03	< 0.03	< 0.03	< 0.0
	Fluoranthene	mg/kg	S4UL	280	0.23	0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	0.18	0.17	0.05	0.2	< 0.03	0.53	0.05	0.23	0.06	< 0.03	< 0.03	< 0.03	< 0.03
	Pyrene	mg/kg	S4UL	620	0.2	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	0.15	0.15	0.04	0.16	< 0.03	0.39	0.04	0.19	0.05	< 0.03	< 0.03	< 0.03	< 0.0
PAH	Benzo(a)anthracene Chrysene	mg/kg mg/kg	S4UL S4UL	7.2 15	0.08	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	0.07	0.07	< 0.03	0.07	< 0.03	0.1	< 0.03	0.1	< 0.03	< 0.03	< 0.03	< 0.03	< 0.0
	Benzo(b)fluoranthene	mg/kg	S4UL	2.6	0.09	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	0.08	0.08	< 0.03	0.08	< 0.03	0.05	< 0.03	0.11	< 0.03	< 0.03	< 0.03	< 0.03	< 0.0
	Benzo(k)fluoranthene Benzo(a)pyrene	mg/kg mg/kg	S4UL S4UL	77 2.2	0.03 0.06	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	0.03	0.03	< 0.03	0.04 0.05	< 0.03	< 0.03	< 0.03	0.05	< 0.03	< 0.03	< 0.03	< 0.03	< 0.0
	Indeno(123-cd)pyrene	mg/kg	S4UL	27	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	0.03	0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	0.04	< 0.03	< 0.03	< 0.03	< 0.03	< 0.0
	Dibenzo(ah)anthracene	mg/kg	S4UL	0.24	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.0
	Benzo(ghi)perylene PAH - USEPA 16, Total	mg/kg mg/kg	S4UL -	320	0.04 0.84	< 0.03 < 0.10	0.04	0.04	< 0.03 < 0.10	0.03 0.84	< 0.03 < 0.10	< 0.03 2.4	< 0.03 < 0.10	0.04	< 0.03 0.11	< 0.03	< 0.03	< 0.10	< 0.0							
	Benzene	mg/kg	S4UL	0.087	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.0
Monoaromatics &	Toluene Ethylbenzene	mg/kg mg/kg	S4UL S4UL	130 47	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.0
Oxygenates	p & m-xylene	mg/kg	S4UL	56	-	-	-	-	-	-	-				-		-	-	-		- 0.01	-	-	-	-	
	o-xylene	mg/kg	S4UL FIO	60	< 0.01	< 0.01	< 0.01	< 0.01 < 0.01	< 0.01	< 0.01 < 0.01	< 0.01 < 0.01	< 0.01	< 0.01 < 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.0
	MTBE (Methyl Tertiary Butyl Ether) Total Phenols	mg/kg mg/kg	EIC S4UL	49 280	- < 0.01	- < 0.01	- < 0.01	- < 0.01	- < 0.01	< 0.01	< 0.01	< 0.01	- 0.01	< 0.01	< 0.01	- 0.01	< 0.01	- < 0.01	- 0.01	< 0.01	< 0.01	- 0.01	< 0.01	< 0.01	< 0.01	< 0.0
Phenols	Phenol - Monohydric	mg/kg	-	-	0.4	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	0.5	0.6	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
	Aliphatic TPH >C5-C6 Aliphatic TPH >C6-C8	mg/kg	S4UL S4UL	42 100	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01 < 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.0
	Aliphatic TPH >C6-C8 Aliphatic TPH >C8-C10	mg/kg mg/kg	S4UL S4UL	100 27	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.0
	Aliphatic TPH >C10-C12	mg/kg	S4UL	130	< 1.50	< 1.50	< 1.50	< 1.50	< 1.50	< 1.50	< 1.50	< 1.50	< 1.50	< 1.50	< 1.50	< 1.50	< 1.50	< 1.50	< 1.50	< 1.50	< 1.50	< 1.50	< 1.50	< 1.50	< 1.50	< 1.5
	Aliphatic TPH >C12-C16 Aliphatic TPH >C16-C21	mg/kg mg/kg	S4UL S4UL	1100 65000	< 1.20 < 1.50	< 1.20 < 1.50	< 1.20 < 1.50	< 1.20 < 1.50	< 1.20 < 1.50	< 1.20 < 1.50	< 1.20 < 1.50	< 1.20 < 1.50	< 1.20 < 1.50	< 1.2												
	Aliphatic TPH >C21-C35	mg/kg	S4UL	65000	< 3.40	< 3.40	< 3.40	4.75	< 3.40	8.8	< 3.40	< 3.40	< 3.40	< 3.40	< 3.40	< 3.40	< 3.40	4.61	< 3.40	< 3.40	11.44	< 3.40	< 3.40	< 3.40	< 3.40	< 3.4
	Aliphatic >EC35-EC40: EH_2D_AL	mg/kg		ļ	< 3.40 < 3.40	< 3.40	< 3.40 < 3.40	< 3.40 < 3.40	< 3.40 < 3.40	< 3.40 < 3.40	< 3.40 < 3.40	< 3.40 < 3.40	< 3.40 < 3.40	< 3.40 < 3.40	< 3.40	< 3.40 < 3.40	< 3.40 < 3.40	< 3.40 < 3.40	< 3.40 < 3.40	< 3.40 < 3.40	4.32 < 3.40	< 3.40 < 3.40	< 3.40	< 3.40	< 3.40	< 3.4
	Aliphatic >EC40-EC44: EH_2D_AL Aliphatic TPH >C35-C44	mg/kg mg/kg	S4UL	65000	- 3.40	- 3.40	- 3.40	- 3.40	- 3.40	- 3.40	- 3.40	- 3.40	- 3.40	- 3.40	- 3.40	- 3.40	- 3.40	- 3.40	- 3.40	- 3.40	- 3.40	- 3.40	- 3.40	- 3.40	- 3.40	- \ 3.4
	Aliphatic C5-C44: EH_2D+HS_1D_AL	mg/kg	LOD	10	< 10.00	< 10.00	< 10.00	< 10.00	< 10.00	< 10.00	< 10.00	< 10.00	< 10.00	< 10.00	< 10.00	< 10.00	< 10.00	< 10.00	< 10.00	< 10.00	15.76	< 10.00	< 10.00	< 10.00	< 10.00	< 10.
Petroleum	Aliphatic TPH >C5-C35 Aromatic TPH >C5-C7	mg/kg mg/kg	S4UL S4UL	70	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.0
Hydrocarbons	Aromatic TPH > C7-C8	mg/kg	S4UL	130	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.0
	Aromatic TPH > C8-C10	mg/kg	S4UL	34	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.0
	Aromatic TPH >C10-C12 Aromatic TPH >C12-C16	mg/kg mg/kg	S4UL S4UL	74 140	< 0.90 < 0.50	< 0.90 < 0.50	< 0.90 0.8	< 0.90 < 0.50	< 0.90 < 0.50	< 0.90 1.73	< 0.90 < 0.50	< 0.90	< 0.90	< 0.8												
	Aromatic TPH >C16-C21	mg/kg	S4UL	260	1.46	1.25	0.93	0.92	< 0.60	1.15	1.01	1.05	0.99	1.79	< 0.60	< 0.60	0.98	< 0.60	2.76	< 0.60	1.52	< 0.60	< 0.60	< 0.60	< 0.60	< 0.
	Aromatic TPH >C21-C35	mg/kg	S4UL	1100	3.58 < 1.40	1.97 < 1.40	4.57 < 1.40	2.31 < 1.40	1.59 < 1.40	3.85 < 1.40	< 1.40 < 1.40	< 1.40 < 1.40	< 1.40 < 1.40	2.14 < 1.40	2.82 < 1.40	1.97 < 1.40	5.39 < 1.40	2.09 < 1.40	2.96 < 1.40	1.95 < 1.40	31.53 < 1.40	6.29 < 1.40	< 1.40 < 1.40	< 1.40 < 1.40	< 1.40 < 1.40	< 1.4 < 1.4
	Aromatic >EC35-EC40: EH_2D_AR Aromatic >EC40-EC44: EH_2D_AR	mg/kg mg/kg	 	·	< 1.40	< 1.40	< 1.40	< 1.40	< 1.40	< 1.40	< 1.40	< 1.40	< 1.40	< 1.40	< 1.40	< 1.40	< 1.40	< 1.40	< 1.40	< 1.40	< 1.40	< 1.40	< 1.40	< 1.40	< 1.40	< 1.
	Aromatic TPH >C35-C44	mg/kg	S4UL	1100	-					-					<u> </u>	ļ <u>.</u>	· ·				<u> </u>	ļ <u>.</u>	1		ļ <u>-</u>	<u> </u>
	Aromatic C5-C44: EH_2D+HS_1D_AR TPH Ali/Aro C5-C44: EH_2D+HS_1D_Total	mg/kg mg/kg		ļ <u>-</u>	< 10.00 < 10.00	< 10.00	< 10.00 < 10.00	< 10.00 < 10.00	< 10.00 < 10.00	< 10.00 < 10.00	< 10.00 < 10.00	< 10.00 < 10.00	< 10.00 < 10.00	< 10.00 < 10.00	< 10.00 < 10.00	< 10.00 < 10.00	<10.00 <10.00	< 10.00 < 10.00	< 10.00 < 10.00	< 10.00 < 10.00	33.04 48.8	< 10.00 < 10.00	< 10.00	< 10.00	< 10.00	< 10.
		IIIg/Ng			- 10.00	- 10.00	- 10.00	- 10.00	- 10.00	- 10.00	- 10.00	- 10.00	- TO:00	- 10.00	- 10.00	- 10.00	- 10.00	- 10.00	- 10.00	- 10.00	70.0	. 10.00	· 10.00	- 10.00	- 10.00	10.1

-	Not Tested
<lod< th=""><th>Results below Limit of Detection</th></lod<>	Results below Limit of Detection
>GAC	Results above Generic Assessment Criteria
NAD	No Asbestos Detected

Monaghan Dublin Street - McAdam Screened Chemical Analysis Results: Leachate vs Surface Water Criteria

				Sample ID	TP01	TP02	TP02	TP03	TP04	TP06	TP07	TP07	TP05	вноз
				Depth (m)	0.25	0.50	2.00	0.50	0.25	0.50	1.00	1.50	0.50	0.50
		Stratum (see re	eport for fur	ther details)	Made Ground	Made Ground	Made Ground	Made Ground	Made Ground	Made Ground	Made Ground	Made Ground	Made Ground	Made Ground
		(525)		Sample Date	09/08/2024	09/08/2024	09/08/2024	08/08/2024	08/08/2024	08/08/2024	08/08/2024	08/08/2024	13/08/2024	29/07/2024
	Analyte	Units	wqs	Source		, , , , , ,	. , , , , ,	, , , , , ,	, , , , , ,	. , ,	, , , , , ,			, , , , , ,
	pH	pH Units	-	-	7.7	7.3	7.4	7.3	7.3	7.1	7.2	7.2	7.1	6.7
	Electrical Conductivity	μS/cm	-	-	24.6	66.4	51.5	39.5	28.3	56.9	42.9	48.3	74	48.2
	Total Cyanide Free Cyanide	μg/l μg/l	10.00	EQS -	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
	Thiocyanate as SCN	μg/l	<u>-</u>		< 0.0001	< 0.0001 24	< 0.0001	< 0.0001 26	< 0.0001 30	< 0.0001	< 0.0001 26	< 0.0001	< 0.0001 < 20	< 0.0001 < 20
	Sulphate as SO4	mg/l	400.00	EQS	2.1	8.8	3.3	3.9	1.7	2.3	2.3	2.8	15	2.3
Ingranica	Total Sulphur	μg/l		-	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01	< 0.01	0.04	0.06	< 0.01
Inorganics	Sulphide	μg/l	-	-	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
	Ammonium as NH4	μg/l	0.26	EQS	-	-	-	-		-	-			-
	Ammoniacal Nitrogen as N	mg/l			< 0.015 < 2.0	< 0.015	< 0.015	< 0.015 < 2.0	< 0.015	< 0.015 < 2.0	< 0.015 < 2.0	< 0.015 < 2.0	< 0.015	2 < 2.0
	Dissolved Organic Carbon (DOC) Phenol - Monohydric Low Level	mg/l mg/l	 -		< 0.0015	< 2.0 0.0024	< 2.0 0.0024	0.0021	< 2.0 0.0021	< 0.0015	< 0.0015	0.0021	< 2.0 < 0.0015	< 0.0015
	Total Hardness as CaCO3	mg/l		-	8.12	22.4	19.8	20.6	7.14	23.9	16.3	18.9	26.9	21.8
	Calcium (dissolved)	µg/l	-	-	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
	Dissolved Arsenic	µg/l	50.00	EQS	0.25	< 0.16	0.21	0.25	1.4	0.43	0.73	0.63	0.75	0.24
	Dissolved Boron	µg/l	2000.00	EQS	0.013	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012
	Dissolved Cadmium	µg/l	0.08	EQS	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
	Chromium (hexavalent) Chromium (III - dissolved)	μg/l μg/l	3.4 4.7	EQS EQS	< 7.0	< 7.0 < 1.0	< 7.0 < 1.0	< 7.0 < 1.0	< 7.0 < 1.0	< 1.0	< 7.0 < 1.0	< 7.0	< 7.0 < 1.0	< 1.0
	Chromium (dissolved)	μg/l	- 4.7		-	-	- 1.0	-	-	-	-	-	-	-
Metals	Copper (dissolved)	μg/l	1.00	EQS	0.9	0.6	0.6	0.7	2.2	0.9	1.1	0.9	2.2	0.8
	Lead (dissolved)	µg/l	1.20	EQS	0.19	< 0.09	< 0.09	< 0.09	3.5	< 0.09	0.38	0.1	0.23	< 0.09
	Mercury (dissolved)	µg/l	0.07	EQS	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	Nickel (dissolved)	µg/l	4.00	EQS	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Selenium (dissolved)	µg/l		- EO9	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25
	Vanadium (dissolved) Zinc (dissolved)	μg/l μg/l	20.00 11.90	EQS EQS	< 0.6 2.6	< 0.6 < 1.3	< 0.6 < 1.3	< 0.6 < 1.3	2.7	< 0.6 < 1.3	1 2.2	< 0.6 < 1.3	< 0.6 2.4	< 0.6 < 1.3
	Naphthalene	ug/l	2.000	EQS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
	Acenaphthylene	ug/l	0.01	LOD	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	Acenaphthene	ug/l	0.01	LOD	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	Fluorene	ug/l	0.01	LOD	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	Phenanthrene	ug/l	0.01	LOD	0.02	< 0.01	0.01	0.02	0.02	0.02	0.02	0.02	0.02	< 0.01
	Anthracene Fluoranthene	ug/l ug/l	0.100 0.0063	EQS EQS	< 0.01 0.03	< 0.01 0.01	0.03	< 0.01 0.01	< 0.01 0.02	< 0.01 0.02	< 0.01 < 0.01	< 0.01 0.02	< 0.01 0.02	< 0.01 0.01
РАН	Pyrene	ug/l	0.010	LOD	0.02	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	Benzo(a)anthracene	ug/l	0.010	LOD	< 0.01	< 0.01	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	Chrysene	ug/l	0.010	LOD	< 0.01	< 0.01	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	Benzo(b)fluoranthene	ug/l	0.010	LOD	< 0.01	< 0.01	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	Benzo(k)fluoranthene	ug/l	0.010	LOD	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	ug/l ug/l	0.00017 0.010	EQS LOD	< 0.01	< 0.01	< 0.01 < 0.01	< 0.01 < 0.01	< 0.01	< 0.01	< 0.01 < 0.01	< 0.01 < 0.01	< 0.01	< 0.01 < 0.01
	Dibenz(a,h)anthracene	ug/l	0.010	LOD	< 0.01 < 0.01	< 0.01 < 0.01	< 0.01	< 0.01	< 0.01 < 0.01	< 0.01 < 0.01	< 0.01	< 0.01	< 0.01 < 0.01	< 0.01
	Benzo(ghi)perylene	ug/l	0.010	LOD	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	PAH Total	ug/l	-	-	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
	Benzene	µg/l	10.0	EQS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	Toluene	µg/l	74.0	EQS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
lonoaromatics & Oxygenates	Ethylbenzene p & m-xylene	µg/l	20.0 30.0	EQS EQS	< 1.0	< 1.0	< 1.0	< 1.0 < 1.0	< 1.0	< 1.0	< 1.0 < 1.0	< 1.0	< 1.0	< 1.0
a oxygenates	o-xylene	μg/l μg/l	30.0	LOD	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	MTBE (Methyl Tertiary Butyl Ether)	μg/l	10.0	EQS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Phenols	Total Phenols	µg/l	0.0077	EQS	-	-	-	-	-	-	-	-	-	-
	Aliphatic TPH >C5-C6	μg/l	1.0	LOD	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Aliphatic TPH >C6-C8	μg/l	1.0	LOD	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Aliphatic TPH >C8-C10	μg/l	1.0	LOD	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Aliphatic TPH >C10-C12	μg/l	10.0	LOD	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Aliphatic TPH >C12-C16	μg/l	10.0	LOD	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Aliphatic TPH >C16-C21	µg/l	10.0	LOD	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Aliphatic TPH >C21-C35 Aliphatic TPH >C35-C40	μg/l μg/l	10.0 10.0	LOD LOD	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Aliphatic TPH >C35-C44	μg/l	10.0	LOD	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	440	< 1.0	< 1.0	< 1.0	< 1.0
	Aliphatic TPH >C40-C44	μg/l	10.0	LOD	-	-	-	-	-	- 1.0	-	-	-	-
	Aliphatic TPH >C5-C35	μg/l	10.0	LOD	-	-	-	-	-	-	-	-	-	-
	Aliphatic C10-C44: EH_CU_1D_AL	µg/l	1.0	LOD	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Petroleum	Aliphatic TPH > C5-C44	µg/l	10.0	LOD				- 0.1	- 0.1	- 0.4	-	- 0.4		-
ydrocarbons	Aromatic TPH >C5-C7 Aromatic TPH >C7-C8	µg/l	1.0	LOD LOD	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Aromatic TPH >C7-C8 Aromatic TPH >C8-C10	μg/l μg/l	1.0	LOD	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1 < 0.1	< 0.1
	Aromatic TPH >C10-C12	μg/l	10.0	LOD	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Aromatic TPH >C12-C16	μg/l	10.0	LOD	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Aromatic TPH >C16-C21	µg/l	10.0	LOD	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Aromatic TPH >C21-C35	μg/l	10.0	LOD	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Aromatic TPH >C35-C40	µg/l	10.0	LOD	- 0.1	- 0.1	- 0.1	- 0.1	- 0.1	- 0.1	- 0.1	- 201	- 201	- 0.1
	Aromatic TPH >C35-C44 Aromatic TPH >C40-C44	µg/l	10.0 10.0	LOD LOD	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Aromatic TPH >C40-C44 Aromatic TPH >C10-C44	μg/l μg/l	10.0	LOD	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Aromatic TPH >C5-C44	μg/l	10.0	LOD	-	-	-	- 0.1			-	-	-	-
	Aromatic TPH >C6-C35	µg/l	10.0	LOD	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Ali/Aro C10-C44: EH_CU_1D_Total	µg/l	10.0	LOD	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	Not Tested													
LOD	Results below Limit of Detection													

CLOD
Results below Limit of Detection
Fier 1 Value
Results above Tier 1 Assessment Criteria

Monaghan Dublin Street - McAdam Screened Chemical Analysis Results: Leachate vs Groundater Criteria

				Cample ID								OLUTIONS		
				Sample ID Depth (m)	TP01 0.25	TP02 0.50	TP02 2.00	TP03 0.50	TP04 0.25	TP06 0.50	TP07	TP07 1.50	TP05 0.50	BH03 0.50
		Ctratum (coo	ronort for fur	,									Made	Made
		Stratum (see				Made Ground	Made Ground	Made Ground	Made Ground	Made Ground	Made Ground	Made Ground	Ground	Ground
	Analyte	Unito	wos	Sample Date Source	09/08/2024	09/08/2024	09/08/2024	08/08/2024	08/08/2024	08/08/2024	08/08/2024	08/08/2024	13/08/2024	29/07/2024
	pH	Units pH Units	wqs	- Source	7.7	7.3	7.4	7.3	7.3	7.1	7.2	7.2	7.1	6.7
	Electrical Conductivity	μS/cm			24.6	66.4	51.5	39.5	28.3	56.9	42.9	48.3	74	48.2
	Total Cyanide	µg/l	10	LOD	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
	Free Cyanide	µg/l		-	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
	Thiocyanate as SCN	μg/l	-	-	23	24	33	26	30	32	26	31	< 20	< 20
	Sulphate as SO4	mg/l	250.00	RPV	2.1	8.8	3.3	3.9	1.7	2.3	2.3	2.8	15	2.3
Inorganics	Total Sulphur	µg/l	-		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01	< 0.01	0.04	0.06	< 0.01
	Sulphide	µg/l	-	- DD/	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
	Ammonium as NH4	μg/l mg/l	500	RPV	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	
	Ammoniacal Nitrogen as N Dissolved Organic Carbon (DOC)	mg/l mg/l			< 0.015 < 2.0	< 0.015 < 2.0	< 2.0	< 0.015 < 2.0	< 2.0	< 2.0	< 0.015 < 2.0	< 2.0	< 2.0	< 2.0
	Phenol - Monohydric Low Level	mg/l	-	-	< 0.0015	0.0024	0.0024	0.0021	0.0021	< 0.0015	< 0.0015	0.0021	< 0.0015	< 0.0015
	Total Hardness as CaCO3	mg/l	-	-	8.12	22.4	19.8	20.6	7.14	23.9	16.3	18.9	26.9	21.8
	Calcium (dissolved)	μg/l	-	-	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
	Dissolved Arsenic	µg/l	10.00	RPV	0.25	< 0.16	0.21	0.25	1.4	0.43	0.73	0.63	0.75	0.24
	Dissolved Boron	µg/l	1000.00	RPV	0.013	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012
	Dissolved Cadmium	µg/l	5.00	RPV	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
	Chromium (hexavalent) Chromium (III)	µg/l µg/l	5	LOD -	< 7.0 < 1.0	< 7.0 < 1.0	< 7.0 < 1.0	< 7.0 < 1.0	< 7.0 < 1.0	< 7.0 < 1.0	< 7.0 < 1.0	< 7.0 < 1.0	< 7.0 < 1.0	< 7.0 < 1.0
	Chromium (dissolved)	µg/l			- 1.0	- 1.0	- 1.0	- 1.0	- 1.0	- 1.0	- 1.0	-	- 1.0	- 1.0
Metals	Copper (dissolved)	µg/l	2000	DWS	0.9	0.6	0.6	0.7	2.2	0.9	1.1	0.9	2.2	0.8
	Lead (dissolved)	µg/l	10.00	RPV	0.19	< 0.09	< 0.09	< 0.09	3.5	< 0.09	0.38	0.1	0.23	< 0.09
	Mercury (dissolved)	µg/l	1.00	RPV	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	Nickel (dissolved)	μg/l	20.00	RPV	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Selenium (dissolved)	µg/l	10.00	RPV	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25
	Vanadium (dissolved)	µg/l	5000.00	-	< 0.6	< 0.6	< 0.6	< 0.6	2	< 0.6	1	< 0.6	< 0.6	< 0.6
	Zinc (dissolved) Naphthalene	μg/l ug/l	5000.00 0.01	RPV LOD	2.6 < 0.05	< 1.3 < 0.05	< 1.3 < 0.05	< 1.3 < 0.05	2.7 < 0.05	< 1.3 < 0.05	2.2 < 0.05	< 1.3 < 0.05	2.4 < 0.05	< 1.3 < 0.05
	Acenaphthylene	ug/l	0.01	LOD	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.03	< 0.01
РАН	Acenaphthene	ug/l	0.01	LOD	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	Fluorene	ug/l	0.01	LOD	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	Phenanthrene	ug/l	0.01	LOD	0.02	< 0.01	0.01	0.02	0.02	0.02	0.02	0.02	0.02	< 0.01
	Anthracene	ug/l	0.01	LOD	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	Fluoranthene	ug/l	0.01	LOD	0.03	0.01	0.03	0.01	0.02	0.02	< 0.01	0.02	0.02	0.01
	Pyrene Renze(a)anthracene	ug/l	0.01 0.01	LOD LOD	0.02	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	Benzo(a)anthracene Chrysene	ug/l ug/l	0.01	LOD	< 0.01 < 0.01	< 0.01	0.01	< 0.01	< 0.01 < 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	Benzo(b)fluoranthene	ug/l	Sum of 4	Sum of 4	< 0.01	< 0.01	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	Benzo(k)fluoranthene	ug/l	Sum of 4	Sum of 4	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	Benzo(a)pyrene	ug/l	0.01	RPV	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	Indeno(1,2,3-cd)pyrene	ug/l	Sum of 4	Sum of 4	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	Dibenz(a,h)anthracene	ug/l	0.001	LOD	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	Benzo(ghi)perylene	ug/l	Sum of 4	Sum of 4	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	Sum of Four Benzene	ug/l µg/l	0.1 1.0	RPV RPV	< 0.20 < 1.0	< 0.20 < 1.0	< 0.20 < 1.0	< 0.20 < 1.0	< 0.20 < 1.0	< 0.20 < 1.0	< 0.20	< 0.20 < 1.0	< 0.20	< 0.20
	Toluene	µg/l	700.0	RPV	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Monoaromatics		μg/l	300.0	RPV	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
& Oxygenates		µg/l	500.0	RPV	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	o-xylene	µg/l	3.0	LOD	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	MTBE (Methyl Tertiary Butyl Ether)	µg/l	10.0	LOD	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	Total Phenols	μg/l	-	-	-	-			-		-		-	-
	Aliphatic TPH > C5-C6 Aliphatic TPH > C6-C8	µg/l	1.0	LOD	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Aliphatic TPH > C6-C8 Aliphatic TPH > C8-C10	µg/l µg/l	1.0 1.0	LOD LOD	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1	< 0.1	< 0.1 < 0.1	< 0.1	< 0.1	< 0.1 < 0.1	< 0.1	< 0.1
	Aliphatic TPH >C10-C12	μg/l	10.0	LOD	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Aliphatic TPH >C12-C16	μg/l	10.0	LOD	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Aliphatic TPH >C16-C21	μg/l	10.0	LOD	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Aliphatic TPH >C21-C35	μg/l	10.0	LOD	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Aliphatic TPH > C35-C40	µg/l	10.0	LOD	-	-	-	-			-	-		
	Aliphatic TPH >C35-C44	µg/l	10.0	LOD	- < 1 N	- < 1.0	- < 1 N		- < 1 N	- < 1.0	- < 1.0	- < 1.0	< 1.0	- <10
	Aliphatic TPH >C40-C44 Aliphatic TPH >C5-C35	µg/l	10.0 10.0	LOD LOD	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	Aliphatic C10-C44: EH_CU_1D_AL	µg/l µg/l	1.0	LOD	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	Aliphatic TPH >C5-C44	μg/l	10.0	LOD	-	-	-	-	-	-	-	-	-	-
Petroleum Hydrocarbons	Aromatic TPH >C5-C7	µg/l	1.0	LOD	-	-	-	-	-	-	-	-	-	
riyarocarbons	Aromatic TPH >C7-C8	µg/l	1.0	LOD	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Aromatic TPH >C8-C10	μg/l	1.0	LOD	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Aromatic TPH > C10-C12	µg/l	10.0	LOD	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Aromatic TPH > C12-C16	µg/l	10.0	LOD	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Aromatic TPH >C16-C21 Aromatic TPH >C21-C35	µg/l ug/l	10.0 10.0	LOD LOD	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Aromatic TPH >C21-C35 Aromatic TPH >C35-C40	µg/l µg/l	10.0	LOD	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Aromatic TPH >C35-C44	µg/l	10.0	LOD	-	-	-	-	-	-	-	-	-	-
	Aromatic TPH >C40-C44	µg/l	10.0	LOD	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Aromatic TPH >C10-C44	µg/l	10.0	LOD	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Aromatic TPH >C5-C44	µg/l	10.0	LOD	-	-	-	-	-	-	-	-	-	-
	Aromatic TPH >C6-C35	μg/l	10.0	LOD	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Ali/Aro C10-C44: EH_CU_1D_Total	μg/l	10.0	LOD	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

-	Not Tested
<lod< th=""><th>Results below Limit of Detection</th></lod<>	Results below Limit of Detection
>Tier 1 Value	Results above Tier 1 Assessment Criteria

Monaghan Dublin Street - McAdam Screened Chemical Analysis Results: Water Samples vs Surface Water Criteria

				Sample ID	SW1	SWS1	SW2	SWS2	SW3	SWS3	SW4	SWS4
		Stratum (non ronart for fu	Depth (m)	n/s	n/s	n/s	n/s	n/s	n/s	n/s	n/s
		Stratum (see report for fu	Sample Date	29/07/2024	12/08/2024	29/07/2024	12/08/2024	29/07/2024	12/08/2024	29/07/2024	12/08/2024
	Analyte	Units	wqs	Source	,,	,,	-5/5-/-52-		//	,,	20,01,2021	,,
	pH	pH Units	-	-	7.1	6.5	7.1	6.7	7.1	6.8	7.4	6.9
	Electrical Conductivity	μS/cm		-	282	232	439	381	467	347	641	625
	Total Cyanide Free Cyanide	mg/l	0.01	EQS	< 0.0400 < 0.0200	0.0011	< 0.0400 < 0.0200	0.0011 0.0007	< 0.0400 < 0.0200	0.0018 0.0012	< 0.0400 < 0.0200	0.003 0.0014
	Thiocyanate as SCN	mg/l µg/l			< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20
	Sulphate as SO4	mg/l	400.00	EQS	3.1	7.3	15	18	15	17	33	27
	Total Sulphur	mg/l		-	< 10	< 10	< 10	< 10	61	< 10	11	12
Inorganics	Sulphide	µg/l			0.02	0.03	0.01	0.01	0.01	0.11	0.03	0.01
	Ammonium as NH4	μg/l	0.26	EQS						-	-	
	Ammoniacal Nitrogen as N Dissolved Organic Carbon (DOC)	mg/l mg/l	-		0.051 5.5	0.33 6.4	2.7 7.1	1.2 6.6	1.9 7.3	1.6 5.8	0.66 8.8	3.4 9.3
	Phenol - Monohydric Low Level	mg/l			< 0.1000	0.0022	< 0.1000	< 0.0015	< 0.1000	0.0026	< 0.1000	0.0046
	Total Hardness as CaCO3	mg/l	-	-	125	111	156	149	163	130	187	176
	Calcium (dissolved)	mg/l	-	-	46	40	53	50	55	43	61	57
	Dissolved Arsenic	µg/l	50.00	EQS	0.84	0.53	1.3	0.77	1.2	0.85	0.77	1
	Dissolved Boron	mg/l	2.00	EQS	0.076 < 0.03	0.02 < 0.03	0.049 < 0.03	0.031	0.051	0.024 < 0.03	0.045	0.04 < 0.03
	Dissolved Cadmium Chromium (hexavalent)	µg/l µg/l	0.08 3.4	EQS EQS	< 7.0	< 7.0	< 7.0	< 0.03 < 7.0	< 0.03 < 7.0	< 7.0	< 0.03 < 7.0	< 7.0
	Chromium (III - dissolved)	μg/l	4.7	EQS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	Chromium (dissolved)	µg/l		-		-	-	-	-	-	-	-
Metals	Copper (dissolved)	μg/l	1.00	EQS	0.4	1.2	0.8	2.1	0.7	1.9	3.7	2.7
	Lead (dissolved)	μg/l	1.20	EQS	0.32	0.5	0.28	0.28	0.33	0.56	< 0.09	0.3
	Mercury (dissolved) Nickel (dissolved)	µg/l µg/l	0.07 4.00	EQS EQS	< 0.01 1.1	< 0.01 0.9	< 0.01 1.9	< 0.01 1.4	< 0.01 1.5	< 0.01	< 0.01 2.6	< 0.01
	Selenium (dissolved)	µg/l	-		< 0.25	0.35	< 0.25	0.34	< 0.25	< 0.25	< 0.25	0.33
	Vanadium (dissolved)	µg/l	20.00	EQS	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6
	Zinc (dissolved)	µg/l	79.00	EQS	120	61	79	65	46	11	62	90
	Naphthalene	ug/l	2.00	EQS	< 0.50	< 0.50	< 0.50	1.1	< 0.50	1.7	< 0.50	0.07
	Acenaphthylene Acenaphthene	ug/l	0.01	LOD	< 0.10 < 0.10	< 0.10	< 0.10 < 0.10	0.28	< 0.10	< 0.10 0.96	0.15 < 0.10	< 0.01 0.01
	Fluorene	ug/l ug/l	0.01	LOD	< 0.10	< 0.10	< 0.10	0.76	< 0.10 < 0.10	0.96	0.17	0.01
	Phenanthrene	ug/l	0.01	LOD	0.19	0.17	0.19	2.4	0.15	0.68	0.71	0.01
	Anthracene	ug/l	0.10	EQS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	0.12	< 0.10	< 0.01
	Fluoranthene	ug/l	0.0063	EQS	< 0.10	< 0.10	< 0.10	0.58	< 0.10	0.44	0.87	< 0.01
PAH	Pyrene	ug/l	0.01	LOD	< 0.10 < 0.10	< 0.10	< 0.10 < 0.10	1.8	< 0.10 < 0.10	0.51	2.8 < 0.10	< 0.01 < 0.01
PAH	Benzo(a)anthracene Chrysene	ug/l ug/l	0.01	LOD	< 0.10	< 0.10 < 0.10	< 0.10	0.17 0.13	< 0.10	0.16	3.4	< 0.01
	Benzo(b)fluoranthene	ug/l	0.01	LOD	< 0.10	< 0.10	< 0.10	0.28	< 0.10	0.3	0.9	< 0.01
	Benzo(k)fluoranthene	ug/l	0.01	LOD	< 0.10	< 0.10	< 0.10	0.11	< 0.10	0.15	< 0.10	< 0.01
	Benzo(a)pyrene	ug/l	0.00017	EQS	< 0.10	< 0.10	< 0.10	0.22	< 0.10	0.27	0.81	< 0.01
	Indeno(1,2,3-cd)pyrene	ug/l	0.01	LOD	< 0.10	< 0.10	< 0.10	0.16	< 0.10	0.18	< 0.10	< 0.01
	Dibenz(a,h)anthracene Benzo(ghi)perylene	ug/l ug/l	0.01	LOD	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 0.2	< 0.10 < 0.10	0.16 0.28	< 0.10 < 0.10	< 0.01 < 0.01
	PAH Total	ug/l	-	-	< 2.00	< 2.00	< 2.00	10	< 2.00	6.6	9.8	< 0.20
	Benzene	µg/l	10.0	EQS	< 1.0	< 1.0	< 10.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	Toluene	µg/l	74.0	EQS	< 1.0	< 1.0	< 10.0	20	< 1.0	< 1.0	< 1.0	< 1.0
Ionoaromatics	Ethylbenzene	µg/l	20.0	EQS	< 1.0	< 1.0	< 10.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
& Oxygenates	p & m-xylene	μg/l	30.0	EQS	< 1.0	< 1.0	< 10.0	11	< 1.0	< 1.0	< 1.0	< 1.0
	o-xylene	µg/l	3.0	LOD	-	-	-	-	-	-	-	
	MTBE (Methyl Tertiary Butyl Ether)	μg/l 	10.0	EQS	< 1.0	< 1.0	< 10.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Phenols	Total Phenols Aliphatic TPH >C5-C6	µg/l µg/l	0.0077 15000.0	EQS EQS	< 0.1	< 0.1	< 1.0	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Aliphatic TPH >C6-C8	μg/l μg/l	15000.0	EQS	< 0.1	< 0.1	< 1.0	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Aliphatic TPH >C8-C10	μg/l	300.0	EQS	< 0.1	< 0.1	< 1.0	26	< 0.1	< 0.1	< 0.1	< 0.1
	Aliphatic TPH >C10-C12	µg/l	300.0	EQS	< 1.0	< 1.0	< 1.0	780	11	52	< 1.0	< 1.0
	Aliphatic TPH >C12-C16	µg/l	300.0	EQS	170	< 1.0	81	5100	130	280	< 1.0	< 1.0
	Aliphatic TPH >C16-C21 Aliphatic TPH >C21-C35	µg/l	1.0 1.0	LOD	530 170	< 1.0 < 1.0	75 21	4900	240	400	< 1.0	< 1.0
	Aliphatic TPH >C21-C35	µg/l µg/l	1.0	LOD	-	- 1.0	21	1500	680	160	< 1.0	< 1.0
	Aliphatic TPH >C35-C44	μg/l	1.0	LOD	< 1.0	< 1.0	< 1.0	< 1.0	74	< 1.0	< 1.0	< 1.0
	Aliphatic TPH >C40-C44	μg/l	1.0	LOD	-	-	-		-	-	-	-
	Aliphatic TPH >C5-C35	μg/l	1.0	LOD		<u> </u>	ļ	<u> </u>		<u> </u>	<u> </u>	ļ
Petroleum Hydrocarbons	Aliphatic C10-C44: EH_CU_1D_AL	μg/l	1.0	LOD	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	Aliphatic TPH >C5-C44 Aromatic TPH >C5-C7	µg/l µg/l	1.0	LOD EQS	< 0.1	< 0.1	< 1.0	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Aromatic TPH >C7-C8	μg/l	700.0	EQS	< 0.1	< 0.1	< 1.0	20		< 0.1	< 0.1	< 0.1
	Aromatic TPH >C8-C10	μg/l	300.0	EQS	< 0.1	< 0.1	< 1.0	48	< 0.1 < 0.1	< 0.1	< 0.1	< 0.1
	Aromatic TPH >C10-C12	µg/l	90.0	EQS	1.3	< 1.0	< 1.0	590	< 1.0	< 1.0	< 1.0	< 1.0
	Aromatic TPH >C12-C16	μg/l	90.0	EQS	34	< 1.0	< 1.0	2900	< 1.0	< 1.0	< 1.0	< 1.0
	Aromatic TPH >C16-C21	µg/l	90.0	EQS	210	< 1.0	< 1.0	2400	< 1.0	< 1.0	< 1.0	< 1.0
	Aromatic TPH >C21-C35 Aromatic TPH >C35-C40	µg/l ug/l	90.0	EQS LOD	79	< 1.0	< 1.0	640	< 1.0	< 1.0	< 1.0	< 1.0
	Aromatic TPH >C35-C44	µg/l µg/l	1.0	LOD	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	Aromatic TPH >C40-C44	μg/l	1.0	LOD		-	-		-	-	-	-
	Aromatic TPH >C10-C44	μg/l	1.0	LOD	1200	< 1.0	< 1.0	6600	< 1.0	< 1.0	< 1.0	< 1.0
	Aromatic TPH >C5-C44	μg/l	10.0	LOD	-		-		-	-	-	
	Aromatic TPH > C6-C35	μg/l	10.0	LOD								
	Ali/Aro C10-C44: EH_CU_1D_Total	μg/l	1.0	LOD	1200	< 1.0	180	19000	1100	990	< 1.0	< 1.0

Not Tested

LOD Results below Limit of Detection

Tier 1 Value Results above Tier 1 Assessment Criteria

GLOBAL PROJECT REACH

Offices

Dublin (Head Office)

Gavin & Doherty Geosolutions Unit A2, Nutgrove Office Park Rathfarnham Dublin 14, D14 X627 Phone: +353 1 207 1000

Priorie: +353

Cork

Gavin & Doherty Geosolutions First Floor, 12 South Mall Cork T12 RD43

London

Gavin & Doherty Geosolutions (UK) Limited 85 Great Portland Street, First Floor London W1W 7LT

Utrecht

Gavin & Doherty Geosolutions WTC Utrecht, Stadsplateau 7 3521 AZ Utrecht The Netherlands

Belfast

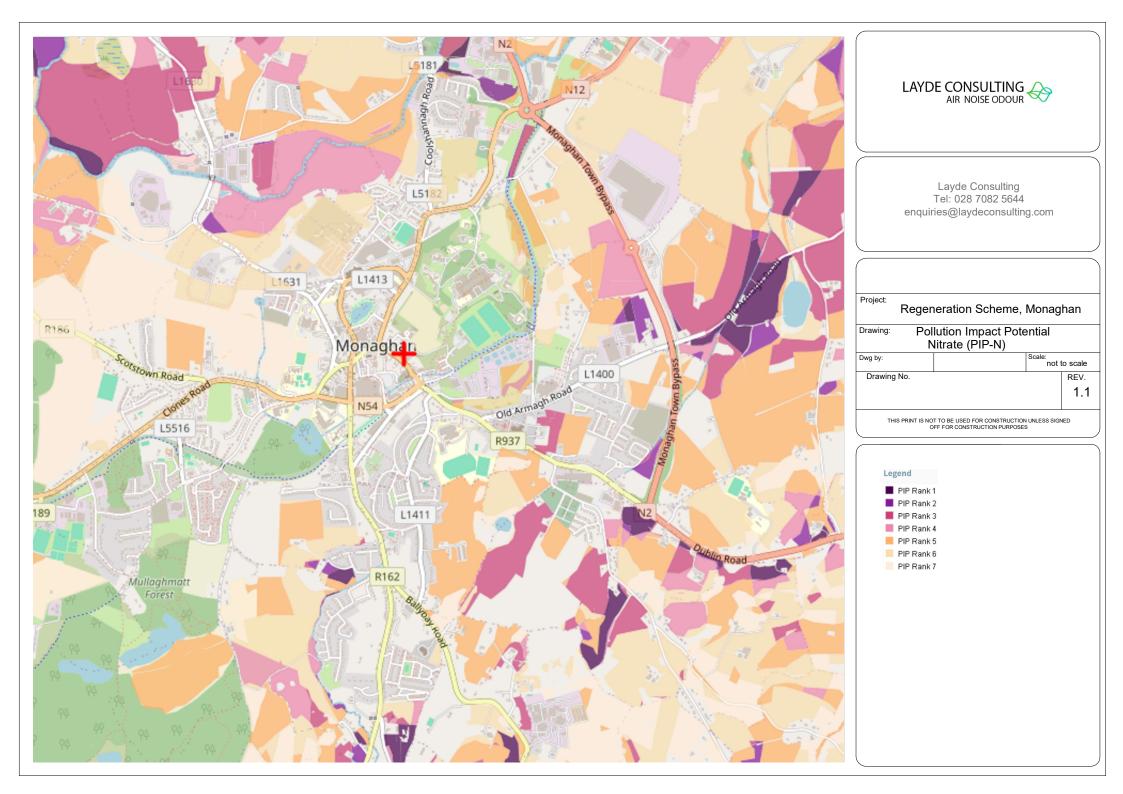
Gavin & Doherty Geosolutions (UK) Limited Scottish Provident Building 7 Donegall Square West Belfast BT1 6JH

Edinburgh

Gavin & Doherty Geosolutions (UK) Limited 22 Northumberland Street SW Lane Edinburgh EH3 6JD

Rhode Island

Gavin & Doherty Geosolutions Inc. 225 Dyer St, 2nd Floor Providence, RI 02903 USA


Website: www.gdgeo.com
Email: info@gdgeo.com

8 Hydrology

- 8.1 Hydrology Figures
- 8.2 Flood Risk Assessment
- 8.3 Drainage Assessment
- 8.4 Inland Fisheries Shambles Scoping Response
- 8.5 Q Values Summary Table
- 8.6 Bathing Water Status

LAYDE CONSULTING AIR NOISE ODOUR

Layde Consulting Tel: 028 7082 5644 enquiries@laydeconsulting.com

Regeneration Scheme, Monaghan

Pollution Impact Potential Phosphorus (PIP-P)

Scale: not to scale Drawing No. REV.

1.1

THIS PRINT IS NOT TO BE USED FOR CONSTRUCTION UNLESS SIGNED OFF FOR CONSTRUCTION PURPOSES

Legend

PIP Rank 1


PIP Rank 2

PIP Rank 3

PIP Rank 4

PIP Rank 5

PIP Rank 7

Layde Consulting Tel: 028 7082 5644 enquiries@laydeconsulting.com

Project: Regeneration Scheme, Monaghan

WFD 3rd Cycle - River Risk Status

Dwg by: Scale: not to scale

Drawing No. REV.

1.1

THIS PRINT IS NOT TO BE USED FOR CONSTRUCTION UNLESS SIGNED OFF FOR CONSTRUCTION PURPOSES

Kο	1//
1/6	у.

- / At Risk
- / Not at Risk
- / Review
- / Unassigned

Client: Monaghan County Council

PREPARED BY	CHECKED BY	APPROVED BY	ISSUE	DATE
Lu Lu Maria Kaperoni/David Anderson		Ken O'Sullivan	1	12/11/2024
K O'Sullivan	P Alcorn	K O'Sullivan	2	27/01/2025

"The contents of this report and the results, recommendations and advices set out therein are based upon the information, drawings, samples and tests referred to in the report. McAdam Design Ltd accept no liability for any loss, damage, charges, costs (including, but not limited to legal costs) or expenses in respect of or in relation to any loss or damage howsoever arising or other loss occasioned by reason of any negligence, error, mistake or negligent misstatement on the part of McAdam Design Ltd, their servants or agents howsoever arising either directly or indirectly from the use of, or reliance on, this report or the carrying out of any recommendations or advice contained in this report or from the use of any plant, machinery, structures, goods or materials referred to in this report. This report is for the sole use of the person(s) or company to whom it is addressed. No part of this report may be copied, reproduced or referred to in whole or in part without the express written permission of McAdam Design Ltd. McAdam Design Ltd accepts no liability to Third Parties arising from their use or reliance on this report or the results, recommendations and advices set out therein."

Contents

1	Introduction	4
1.1	Report Brief	4
1.2	Purpose of Desktop Study FRA	4
1.3	Method of Assessment	4
1.4	Relevant Guidance	5
1.5	Flood Risk	6
1.6	Causes of Flooding	6
1.7	Floodplains	6
1.8	Assessing Flood Risk	7
1.9	Available Hydraulic Model Status	8
2	Existing Site Description and Proposed Site Development	9
2.1	Site Location	9
2.2	Existing Site Description	9
2.3	Topography	10
2.4	Existing Drainage	10
2.5	Proposed Site Development Plans	10
2.6	Vulnerability Classification	11
3	AVAILABLE FLOOD RISK INFORMATION	12
3.1	Monaghan County Council	12
3.1.1	Monaghan Development Plan 2019-2025	12
3.1.2	SFRA Flood Zone Mapping	12
3.2	Office of Public Works (OPW)	13
4	Flood Risk Identification	15
4.1	Initial Assessment	15
4.2	Fluvial Flooding	16
4.3	Surface Water Flood Risk	17
4.4	Groundwater Flooding	18
5	Mitigation Measures	20
5.1	Residual Risk	20
5.2	Flood Protection Measures	20
5.2.1	Effect of Development and Design Levels	20
5.2.2	Surface Water	20
6	Conclusion	22
Append	dices	23
Append	dix A – Flood Zone Mapping	24
Append	dix B — Proposed Site Layout	25
Annand	div C – Drainage Drawings	26

1 Introduction

1.1 Report Brief

This desktop Flood Risk Assessment (FRA) has been commissioned by Monaghan County Council to inform the design of the Dublin Street North Regeneration Project in Monaghan Town, and to support the planning application for the scheme.

The scheme design includes the provision of a new street, 'Russell Row' and high-quality public realm in the Backlands area of Dublin St. as well as public realm design at Dublin St, Old Cross Square and the Diamond Centre Car Park.

The site location plan indicates the full extent of the proposed development. The current site comprises mixed commercial and residential developments, hard standing, soft landscaping areas. There are also several vacant shops and the back land areas are underutilised. The site area is circa 21,200 m2 in size and accessible from Dublin Street and Old Cross Square.

Prior to undertaking the Flood Risk Assessment, a desktop study was undertaken, and the following documents obtained which are referenced throughout this report:

- Civils General Arrangement drawings
- Topographical Survey
- GPR Survey issued by APEX Surveys
- Desktop Ground Investigation Specification by GDG
- Geological Survey Ireland mapping
- Office of Public Works (OPW) maps

1.2 Purpose of Desktop Study FRA

The purpose of this desktop FRA is to review and comment on the adequacy of available flood risk information, identify the risk of flooding from all different sources for the proposed development considering all the available information taken from the gov.ie Office of Public Works (OPW) maps, Monaghan Development Plan 2019-2025 and the Strategic Flood Risk Assessment (SFRA) for the Monaghan Development Plan 2019-2025 published by Monaghan County Council (MCC) in 2019. Geological Survey Ireland mapping has also been consulted to identify bedrock geology and groundwater vulnerability classes for the site due to the absence of site investigation.

Where available information is identified as inadequate, this FRA will outline what further analysis is required. At the end of this document the recommended mitigation measures will be discussed to ensure that the proposed development complies with the relevant planning objectives and guidance.

1.3 Method of Assessment

The method of assessment used complies with the Source-Pathway-Receptor model and provides a spatial assessment of flood risk to people, property, and the environment at the site. Consideration has been given to the source and extent of all potential flood mechanisms at the site, including coastal, fluvial, pluvial, and urban drainage flooding.

1.4 Relevant Guidance

This FRA has been undertaken in consideration with 'The Planning System and Flood Risk Management – Guidelines for Planning Authorities' DoEHLG November 2009, which is the latest relevant guidance document. The FRA follows the structure of the Sequential Test as set out in that document (extract below)

Fig. 3.1: Sequential approach principles in flood risk management

The guidance has been issued to ensure that flood risk is a key consideration for developers, planning & regional authorities and the public in preparing and submitting development proposals.

The principles of the guidance are as follows:

- Avoid the risk, where possible
- Substitute less vulnerable users, where avoidance is not possible, and
- Mitigate and manage the risk, where avoidance and substitution are not possible.

A staged approach is recommended within the guidance document in relation to identifying and assessing flood risk. The three stages of appraisal and assessment are as follows:

- Stage 1 Flood risk identification
- Stage 2 Initial flood risk assessment
- Stage 3 Detailed flood risk assessment

The following policies were also consulted when preparing this document:

- Monaghan County Development Plan 2019-2025 Strategic Flood Risk Assessment (SFRA) for County Monaghan
- National Planning Framework

1.5 Flood Risk

Flood risk can be quantified by relating the probability of the flood event occurring to the consequence of the flood. Probability, in flood event terms, is gauged by potential annual occurrence/return period and flood consequence is dependent on the nature of the flood hazard and the vulnerability of the inundated area. The source-pathway-receptor model considers the components of flood risk.

SOURCE PATHWAY RECEPTOR

The source is the hazard with the potential to cause harm through flooding (e.g. rainfall, high sea levels). The pathway is the mechanism by which the source can affect the receptor (e.g. inadequate drainage, overtopping of coastal defences) and finally, the receptor is anything which is affected by the flood event (e.g. people, infrastructure, property).

1.6 Causes of Flooding

The Planning System and Flood Risk Management Guidelines requires a Flood Risk Assessment to consider all potential causes of flooding, including the following:

- Coastal flooding
- Inland flooding
 - o Overland flow
 - River flooding
 - Flooding from artificial drainage systems
 - o Groundwater flooding
 - Estuarial flooding
- Failure of infrastructure

1.7 Floodplains

A river flood plain is a low-lying area which receives excess flood water when the flow within the watercourse exceeds the capacity of the channel. A coastal flood plain is an area which, during high tide or increased sea levels, becomes inundated with sea water.

1.8 Assessing Flood Risk

In the context of the 'Planning System and Flood Risk Management Guidelines, DoEHLG, 2009' and the Monaghan County Development Plan 2019-2025 SFRA, three flood zones are designated in the consideration of flood risk to a particular site. The three flood zones are described in Table 1-1 below.

Flood Zone	Description
Flood 'Zone A'	where the probability of flooding from watercourses is the highest (greater than 1% or 1 in 100 year for watercourse flooding or 0.5% or 1 in 200 for coastal flooding).
Flood 'Zone B'	where the probability of flooding from watercourses is moderate (between 0.1% or 1 in 1000 year and 1% or 1 in 100 year for watercourse flooding, and between 0.1% or 1 in 1000 year and 0.5% or 1 in 200 for coastal flooding).
Flood 'Zone C'	where the probability of flooding from watercourses and the sea is low or negligible (less than 0.1% or 1 in 1000 year for both watercourse and coastal flooding). Flood Zone 'C' covers all areas which are not in Zones 'A' or 'B'.

Table 1-1 - Flood Zone Description

The planning implications for each of the flood zones are:

Zone A - High probability of flooding.

Most types of development would be considered inappropriate in this zone. Development in this zone should be avoided and/or only considered in exceptional circumstances, such as in city and town centres, or in the case of essential infrastructure that cannot be located elsewhere, and where the Justification Test has been applied.

Only water-compatible development, such as docks and marinas, dockside activities that require a waterside location, amenity open space, outdoor sports and recreation, would be considered appropriate in this zone.

Zone B - Moderate probability of flooding.

Highly vulnerable development, such as hospitals, residential care homes, Garda, fire and ambulance stations, dwelling houses and primary strategic transport and utilities infrastructure, would generally be considered inappropriate in this zone, unless the requirements of the Justification Test can be met.

Less vulnerable development, such as retail, commercial and industrial uses, sites used for short-let for caravans and camping and secondary strategic transport and utilities infrastructure, and water-compatible development might be considered appropriate in this zone.

In general, however, less vulnerable development should only be considered in this zone if adequate lands or sites are not available in Zone C and subject to a flood risk assessment to the appropriate level of detail to demonstrate that flood risk to and from the development can or will adequately be managed.

Zone C - Low probability of flooding.

Development in this zone is appropriate from a flood risk perspective (subject to assessment of flood hazard from sources other than rivers and the coast) but would need to meet the normal range of other proper planning and sustainable development considerations.

1.9 Available Hydraulic Model Status

Flood mapping for watercourses adjacent to and within the site has been produced as part of the OPW's National Indicative Fluvial Mapping (NIFM) dataset. The OPW has created NIFM for a range of present-day and climate change scenarios for all catchments greater than 5 km² in areas where detailed Catchment Flood Risk Assessment and Management (CFRAM) flood maps were not developed in collaboration with the Local Authorities. However, for the development site and adjacent catchments, the CFRAM maps are available to assess the flood extents at the site and in the surrounding areas.

2 Existing Site Description and Proposed Site Development

2.1 Site Location

The proposed development site covers an area of approximately 21,200 m² and is situated in the county town of County Monaghan in the Republic of Ireland

The ITM Reference for the approximate centre of the site is 667400 (Easting) 833700 (Northing).

The development under study is located to the northeast of the town centre, extending from The Diamond to the northwest, south-eastwards along Dublin Street, and is defined to the southeast by Old Cross Square. Access from Dublin is facilitated via the M1 and N2, approximately 130km northbound and access from Belfast is via M1 and N2, approximately 91km to the southwest

An indication of the site location is presented in Figure 2.1 below.

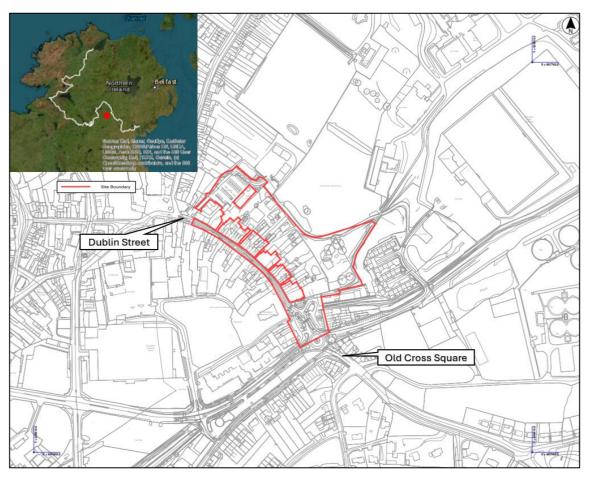


Figure 2.1: Project Dublin Street North Location Map

2.2 Existing Site Description

The site comprises mixed commercial and residential land. This consists of professional services including solicitor's offices, commercial uses including retail units, laundry, clothing, footwear, salon, public house, restaurant, auto repair shop and Guest House. A number of the shops extended the retail use to the full width of the property which does not allow separate access to the upper levels and which has led to vacancy at upper levels. There are also several vacant shops along the street.

2.3 Topography

The topographical survey on the site shows that the levels on the site varying between 68m Above Ordnance Datum (AOD) (in the east) and 59mAOD (in the south). The base level of the region and the site are the Ulster Canal and the River Shambles, which on the site are at levels of around 59mAOD.

2.4 Existing Drainage

According to the GPR survey, there is a 150mm diameter storm sewer running from the northwest of the development site toward Dublin Street, which is assumed to collect stormwater from the access road, as well as commercial and residential areas. The existing services survey also indicates the presence of 150mm diameter sewers at the south of the site, near the Old Cross Square roundabout, which likely collect surface water runoff from the southern portion of the site.

Additionally, a public 225mm foul water sewer runs beneath Dublin Street Road, with outfalls from the existing site connected to it, based on information from the GPR survey and Uisce Éireann asset maps.

2.5 Proposed Site Development Plans

The development plans for the site include;

- Creation of new shared surface, 'Russell Row' to the rear of properties fronting Dublin Street
- New Car park / event space at Russell Row
- Public realm improvements along Dublin Street to include resurfacing, new pedestrian pavements (including widening),.
- Public realm improvements to include the creation of urban civic spaces, pedestrian pavements, steps, cycle routes, street furniture
- Creation of new public 'Community Garden' area.
- Creation of future development plots
- Reinforcement of existing vegetation and new soft landscaping throughout.

The drainage design has been developed to facilitate the scheme design proposals and includes, new surface water and foul drainage infrastructure, sustainable drainage solutions such as raingardens, attenuation tanks (with associated flow control) and permeable paving areas, and re-positioning of existing drainage infrastructure (gullies and manholes) to tie in with the design proposals.

A proposed Site Layout Plan can be seen in Appendix B.

2.6 Vulnerability Classification

The table below summarises the Vulnerability Classes defined in the Guidelines and provides a sample of the most common type of development applicable to each.

Vulnerability	Type of Development		
Highly Vulnerable Development	Includes Garda, ambulance and fire stations, hospitals, schools, residential dwellings, residential institutions, essential infrastructure, such as primary transport and utilities distribution and SEVESO and IPPC sites, etc		
Less Vulnerable Development	Includes retail, leisure, warehousing, commercial, industrial and non-residential institutions, etc.		
Water Compatible Development	Includes Flood Control Infrastructure, docks, marinas, wharves, navigation facilities, water-based recreation facilities, amenity open spaces and outdoor sport and recreation facilities		

Table 2-1 - Vulnerability Classifications

Based on the table above, it can be said that the development under study is classified as 'Less Vulnerable Developments', due to the fact that the scheme will serve to create residential and commercial development on the two Development Plots created by the works.

3 AVAILABLE FLOOD RISK INFORMATION

Several available sources of flood risk information as summarised briefly in Section 1 of this report, were considered and used to build an understanding of the potential risk of flooding to the site. This section highlights key findings from this information.

3.1 Monaghan County Council

3.1.1 Monaghan Development Plan 2019-2025

The Monaghan County Development Plan 2019 – 2025 has been assessed from a flooding and drainage perspective and the following Flood Risk Management and Surface Water Drainage policies have been considered for the preparation of the FRA:

- FMP 2: To restrict development in areas susceptible to flooding except where; a) The proposed development can be justified on strategic grounds. b) The flood risk can be managed to an acceptable degree and without increasing flood risk beyond the site itself. c) Appropriate and detailed mitigation measures can be implemented to remove/minimise flood effects.
- FMP 3: Development proposals on land identified as being at risk of flooding shall be accompanied by a site-specific Flood Risk Assessment (FRA) carried out in accordance with the methodology set out in The Planning System and Flood Risk Management Guidelines for Planning Authorities, 2009.
- FMP 4: All applications in areas prone to flooding shall be subject to the justification test set out in the Flood Risk Management Guidelines. Compensatory flood storage provision or the provision of flood defences will not override the need for completion of the justification test.
- FMP 5: To protect the capacity of rivers, streams, riparian corridors, flood plains and wetlands from inappropriate development which will contribute to increased flood risk. Development on or within a floodplain will not be permitted.
- SDP 1: To require best practice in the design, construction and operation of expanding and new developments to ensure minimum effects on the aquatic environment. Sustainable Urban Drainage Systems designed to ensure both water quality protection and flood minimisation should be included in developments for commercial, industrial, residential, intensive agricultural, public and institutional premises with significant roof or hard surface areas and multiple residential developments.
- SDP 2: To ensure that new development is adequately serviced with surface water drainage infrastructure and promote the use of Sustainable Drainage Systems as appropriate to minimise the effect of a development on flooding and pollution of existing waterways.
- SDP 3: To require that planning applications are accompanied by a comprehensive SUDs assessment that addresses run-off quantity, run-off quality and its impact on the existing habitat and water quality.
- SDP 4: To ensure that all storm water discharges shall be restricted onsite attenuation and or other measures to the pre-development levels (green field) in all new developments. All attenuated storage volumes must take into consideration climate change.

3.1.2 SFRA Flood Zone Mapping

Flood Zone mapping was produced for County Monaghan as part of the Monaghan County Council SFRA. As shown in Figure 3.1, the proposed Regeneration Plan area is located in Flood Zone C with no risk of flooding. The full map is included in Appendix A.

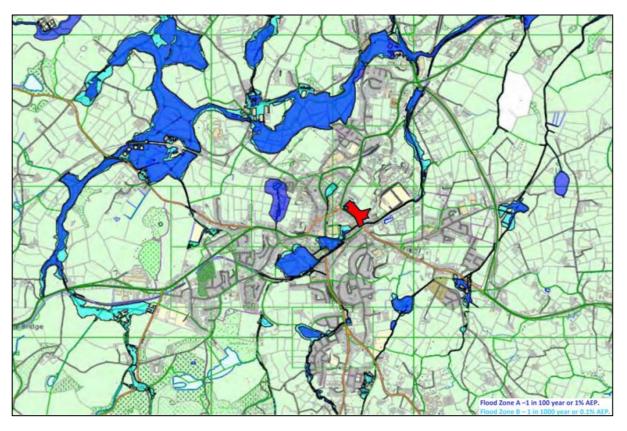


Figure 3.1: Monaghan Town SFRA Flood Zone Mapping

3.2 Office of Public Works (OPW)

According to OPW 'Past Flood Events' Flood Info.ie mapping, there is no past flood event in the area of project Dublin Street North, some records of the near historic flood events below:

- Flooding at Monaghan on 05/12/2015 ID- 13380.
- Shambles River Monaghan Town 24th October 2011 ID-11694.
- Recurring flooding at Monaghan ID-3207. River overflows its banks after heavy rain every year. Road is liable to flood, and properties are affected.

The nearest past flood event from the project site is event ID- 13380 and is located 380m away from the proposed development.

Figure 3.2 below shows the location of the past flood events in the vicinity of the proposed development.

Figure 3.2: OPW Past Flood Events Map

4 Flood Risk Identification

4.1 Initial Assessment

In accordance with the planning guidelines, a Stage 1 Flood risk identification is required to be undertaken to identify any flooding or surface water management issued related to the proposed development site that may warrant further investigation. Initially, the following possible flood mechanisms for the proposed site have been identified:

Table 4.1: Initial Assessment of Potential Flooding Mechanisms

Source / Pathway	Relevant	Comments / Reasoning
Tidal / Coastal	No	N/A. Site is c. 50km from the coast.
Fluvial	No	OPW and Monaghan County Council SFRA indicate that there is no fluvial flooding within the site.
Pluvial/Surface water flooding	Possible	There is no evidence of surface water flooding at the site.
Pluvial (urban drainage)	Possible	There is no evidence of surcharging/flooding from urban drainage systems on roads or lands within the sire boundary or directly adjacent to the site.
Surface water discharge	Possible	Any development has the potential to increase the impermeable area at a site causing an increase in the rate and volume of surface water runoff from the site.
Groundwater flooding	No	OPW website has no risk of groundwater flooding in this area. Monaghan County SFRA mapping also verify that the site has no risk of groundwater flooding.
Blockage	No	No known river culverts in the area.

4.2 Fluvial Flooding

CFRAM mapping for the present day extracted by floodinfo.ie website, and can be seen in Figure 4.1, shows that the site itself is in an area with no risk of present-day fluvial flooding

It is noted that the southern part of the site, close to the Old Cross Square roundabout, is in very close proximity to the river flood extent. However, the site remains unaffected, as the existing levels are above the maximum flood levels, as identified below.

Figure 4.1: CFRAM River Flood Extents – Present Day

The CFRAM River Flood Extents for Mid and High-End Future Scenarios, with an allowance for climate change, confirm that the proposed development is not at risk of fluvial flooding. The relevant map is presented in Figure 4.2.

The same map also indicates that flooding, influenced by the Ulster Canal, extends to adjacent sites with a probability of river flooding between a 1 in 100-year event and a 1 in 1000-year event.

The closest river nodes to the proposed development, located southwest and southeast, are:

- 0639M00184: Maximum water levels are 53.18m for the 1% AEP and 54.14m for the 0.1% AEP.
- 0639M00223: Maximum water levels are 53.35m for the 1% AEP and 54.67m for the 0.1% AEP.

However, as discussed in Section 2.3, the existing ground levels are above the maximum flood levels indicated for the closest river nodes, ensuring that the proposed development will remain safe from river flooding.

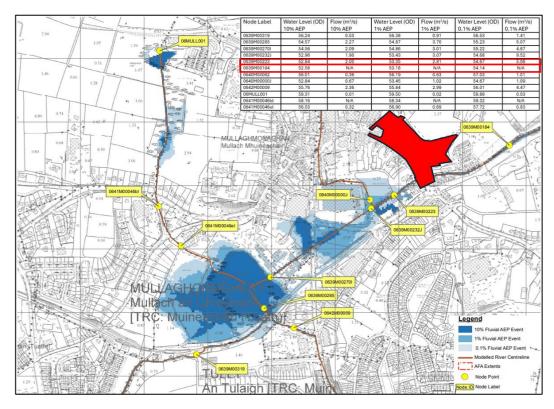


Figure 4.2: CFRAM Fluvial Flood Extents Map

4.3 Surface Water Flood Risk

Based on the SFRA of the Monaghan Local Area Plan, no risk of surface water flooding has been recorded at the site.

As indicated in Figure 4.3 below, the impermeable area of the proposed site will not increase as a result of the development proposals. Therefore, the volume of runoff will not increase compared to the existing site.

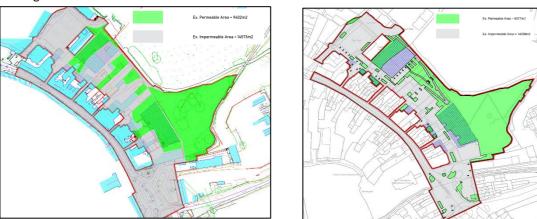


Figure 4.3- Existing and Proposed Permeable and Impermeable areas

Any potential residual impact of surface water on the development will be mitigated by implementing a resilient surface water drainage network, including SuDS, as detailed in Section 5.

4.4 Groundwater Flooding

Groundwater flooding is characterised by below ground flooding where elevated groundwater within permeable deposits may cause flooding of below ground structures. However, there are no basement structures proposed in the scheme.

Above groundwater flooding is characterised when groundwater elevations exceed ground levels, and under this case, the flooding will be treated as surface water.

There is no evidence of groundwater flooding within Monaghan's Local Area Plan or OPW interactive map viewer.

Ground Investigation Specification issued by GDG and Geological Survey Ireland (GSI) data indicate that the site is underlain by Ballysteen Formation (Limestone), described as dark muddy limestone, shale.

GSI mapping also indicates a low permeability of underlain soils (Refer to Figure 4.4). However this will be confirmed once site investigation is completed.

As shown in figure 4.5 below the groundwater vulnerability at the proposed site is moderate to high. This specific map indicates the groundwater vulnerability to an area when the groundwater table may be high and does not reflect the risk of groundwater flooding of the area.

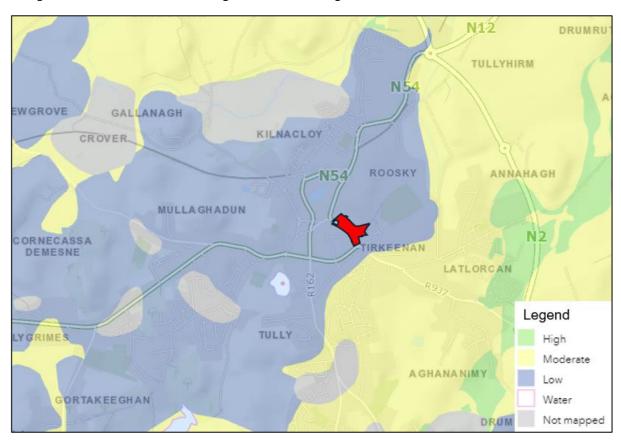


Figure 4.4: GSI Groundwater Subsoil Permeability Map

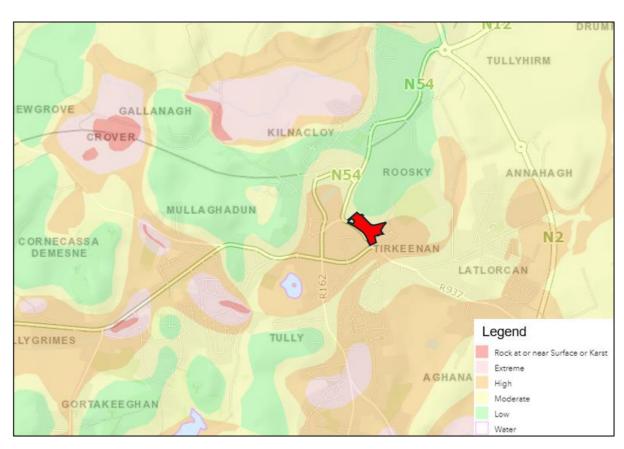


Figure 4.5: GSI Groundwater Vulnerability Map

Figure 4.6: GSI Bedrock Geology Map

5 Mitigation Measures

The following mitigation measures have been considered in accordance with the policies of the Monaghan County Development Plan, as outlined in Section 3 of this document.

5.1 Residual Risk

The site has low risk of flooding from surface water and very low to negligible risk from all other sources.

5.2 Flood Protection Measures

5.2.1 Effect of Development and Design Levels

An assessment of the proposed and existing levels has been undertaken and the proposed levels have been designed as such so the water is directed away from the existing buildings, towards the roads and soft areas. The changes to existing ground levels are minimal and hence there will be no impact on flood risk elsewhere in line with SFRA and OPW Guidelines.

The development is also characterised as water compactible in terms of vulnerability classification and therefore there are no minimum FFLS/FGLs to be applied.

5.2.2 Surface Water

Surface water runoff from the proposed development has been assessed with consideration for the existing site characteristics, using flow route analysis to determine the natural behaviour of the site prior to development. The existing flow path analysis, illustrated in Figure 5.1 below, indicates that during exceedance events or in the event of system blockages, flow will be directed toward Dublin Street Road in the northern portion of the site, while parts of the southern portion will direct flow toward the soft areas to the east.

Figure 5.1: Existing Flow Route Analysis for proposed development site.

In line with Monaghan County Council requirements, the surface water drainage strategy has been developed to collect runoff from impermeable public realm areas via gullies, which will channel water to the proposed below-ground drainage network before connecting to the existing stormwater sewer that discharges into the watercourse south of the site. Therefore, the existing connection will be utilised, and the proposed development will not impact the current situation, as the impermeable area will not increase. Additionally, the inclusion of SuDS features will further enhance the management of surface water runoff.

SuDS features, including rain gardens, tree pits with overflow pipes directed to onsite drainage, and permeable paving cells in parking spaces, have been included to manage runoff from the proposed impermeable surfaces. Outfalls from SuDS features will be established at levels that allow them to function primarily as overflows, accommodating excess runoff not managed through infiltration.

A petrol interceptor is also proposed to treat surface water runoff before it discharges into the existing watercourse.

Detailed drawings of the proposed surface water drainage strategy can be found in Appendix C (Drawing Ref Nos. DSN-MCA-ZZ-XX-DR-CE-2001-2004).

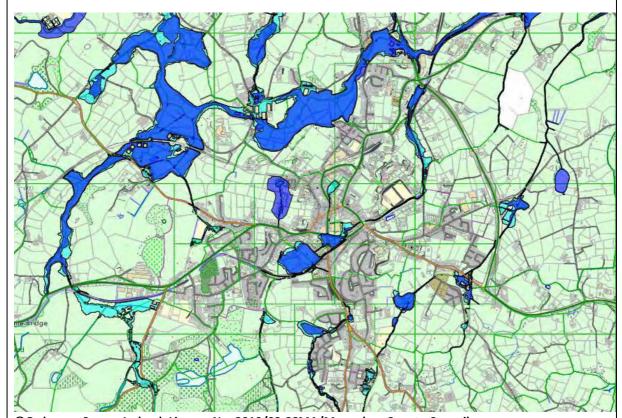
6 Conclusion

This flood risk assessment demonstrates that the proposed development will not be at risk of flooding, based on data from all available sources.

The regeneration plan for the Dublin Street North development will improve the existing runoff volume by incorporating soft landscaping areas and implementing SuDS features such as rain gardens, tree pits, and permeable paving cells within parking spaces to enhance the management of surface water runoff from the proposed hard surfaces.

Finally, by adopting the recommended mitigation measures, the post-development site will be safe and will reduce any residual risk both on and off-site.

.

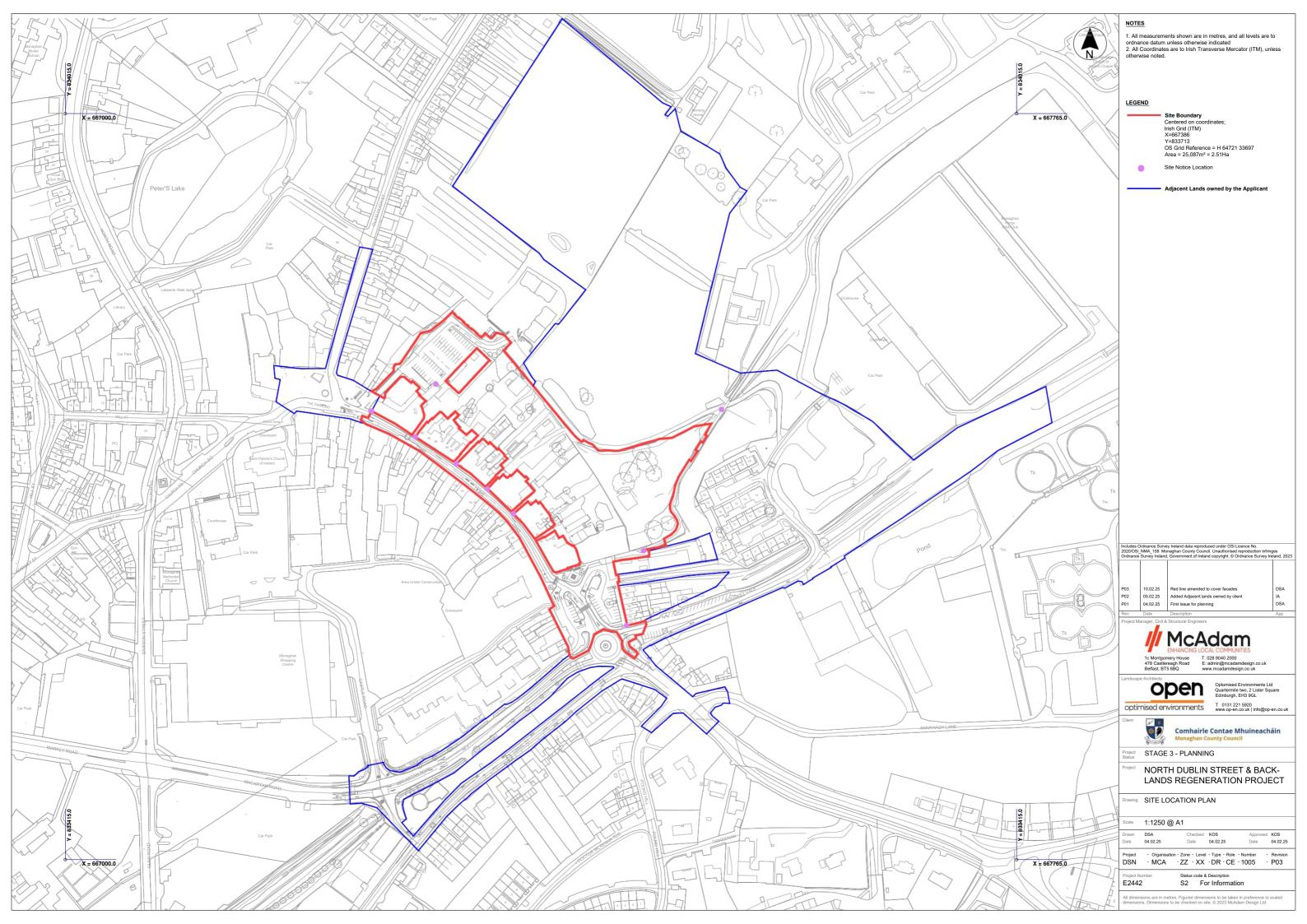


Appendices

Appendix A – Flood Zone Mapping

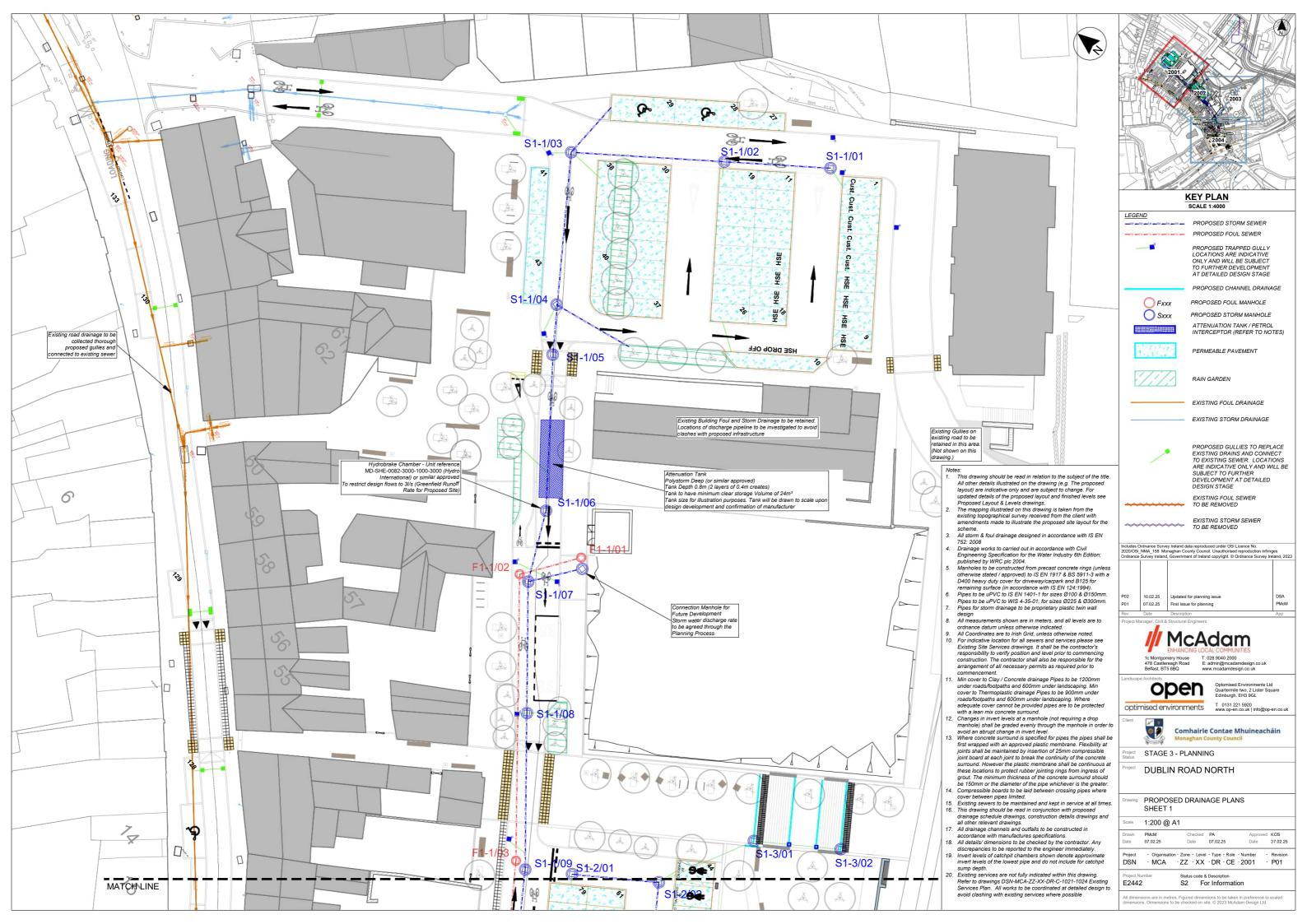
Map 15: Monaghan Town	
Zoning within Flood Zone A and/or B?	Yes
Area for Further Assessment under CFRAM programme?	North Western Neagh Bann UoM6

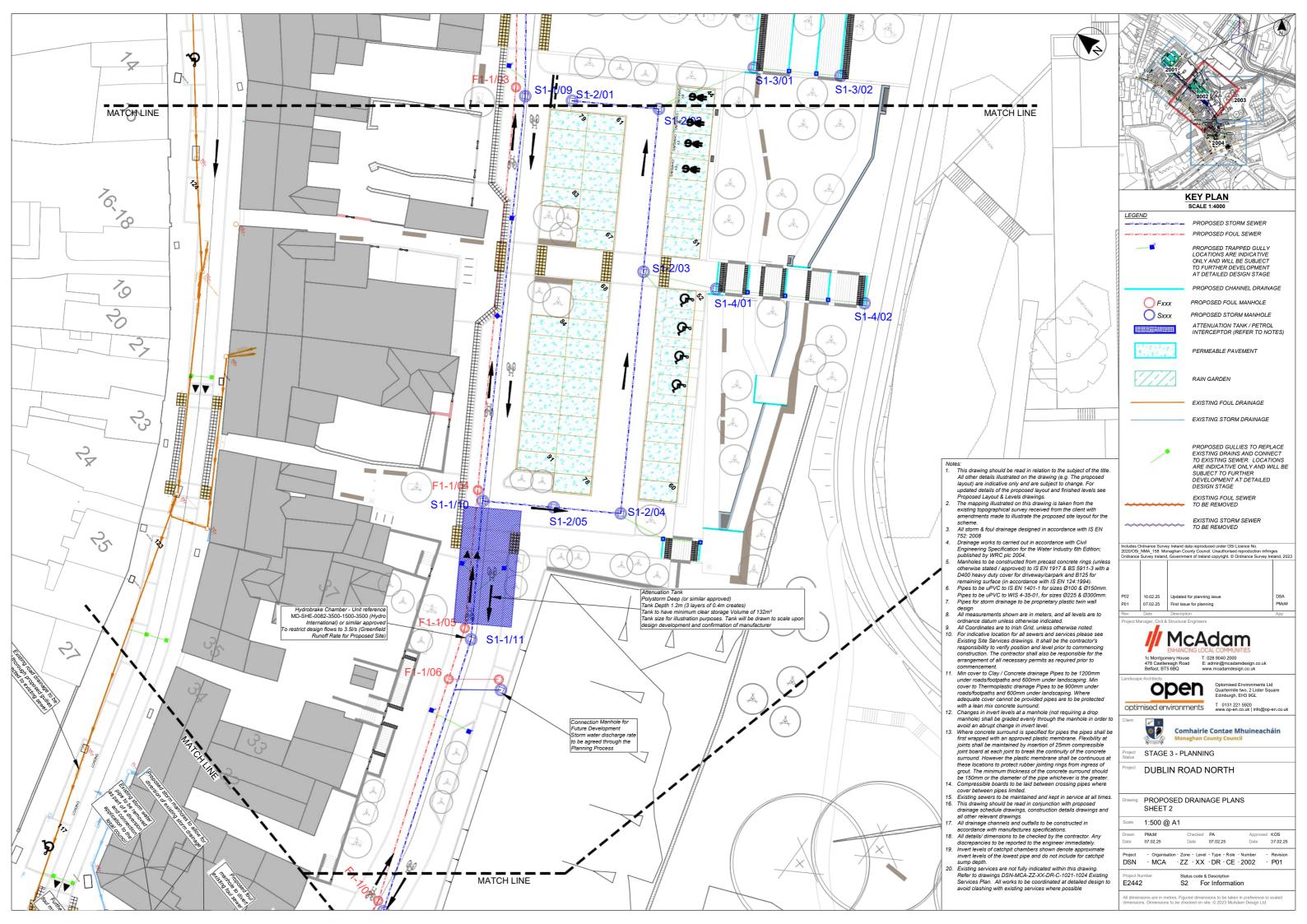
©Ordnance Survey Ireland, Licence No. 2010/03 CCMA/Monaghan County Council.

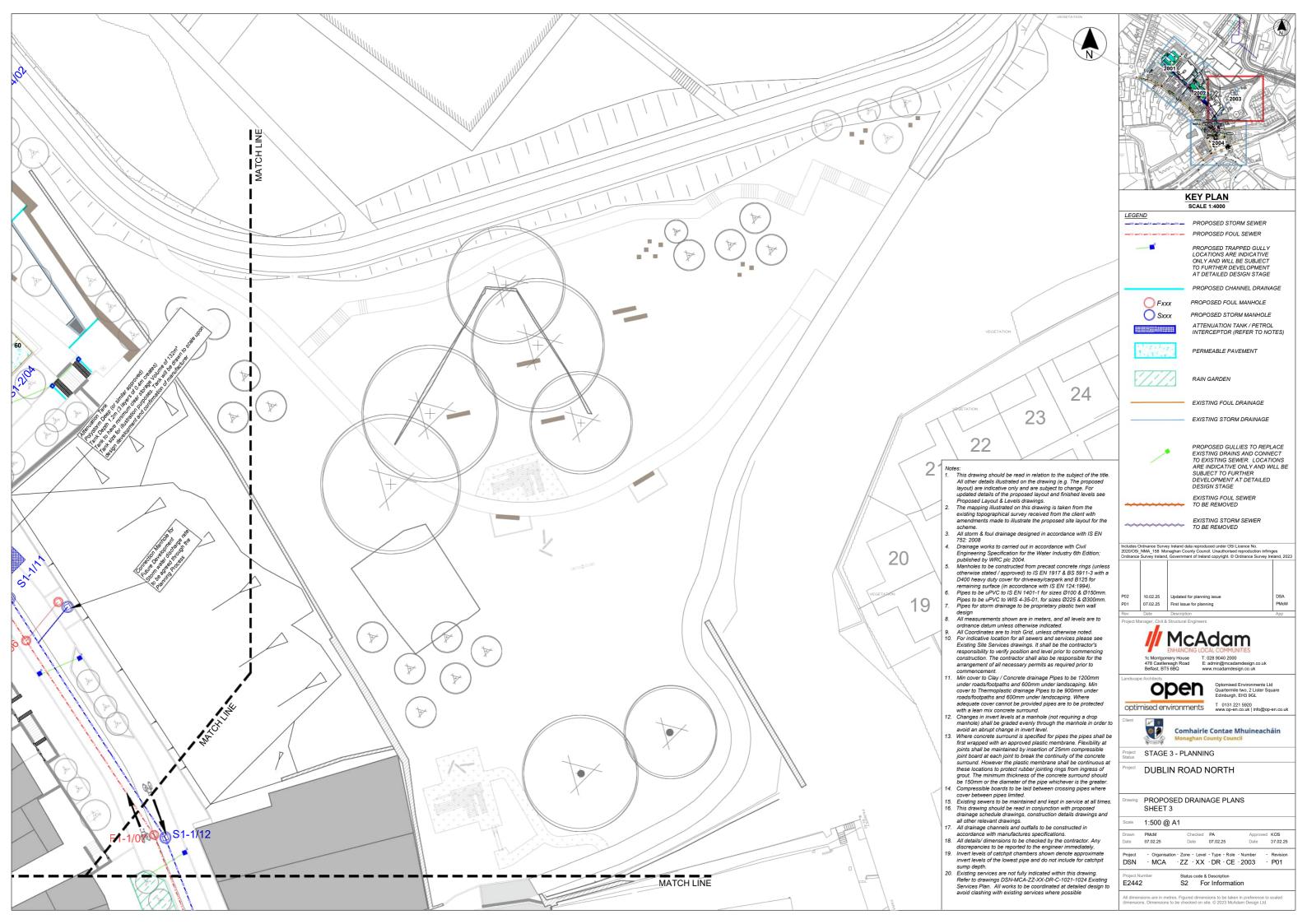

The Flood Zone mapping has been produced in accordance with the Planning Guidelines and therefore ignores the impact of flood protection structures. Areas protected by flood defences still carry a residual risk of flooding due to overtopping or breach, there may also be no guarantee of maintenance in perpetuity. Note that Flood Zone mapping is only reproduced within the settlement development boundary.

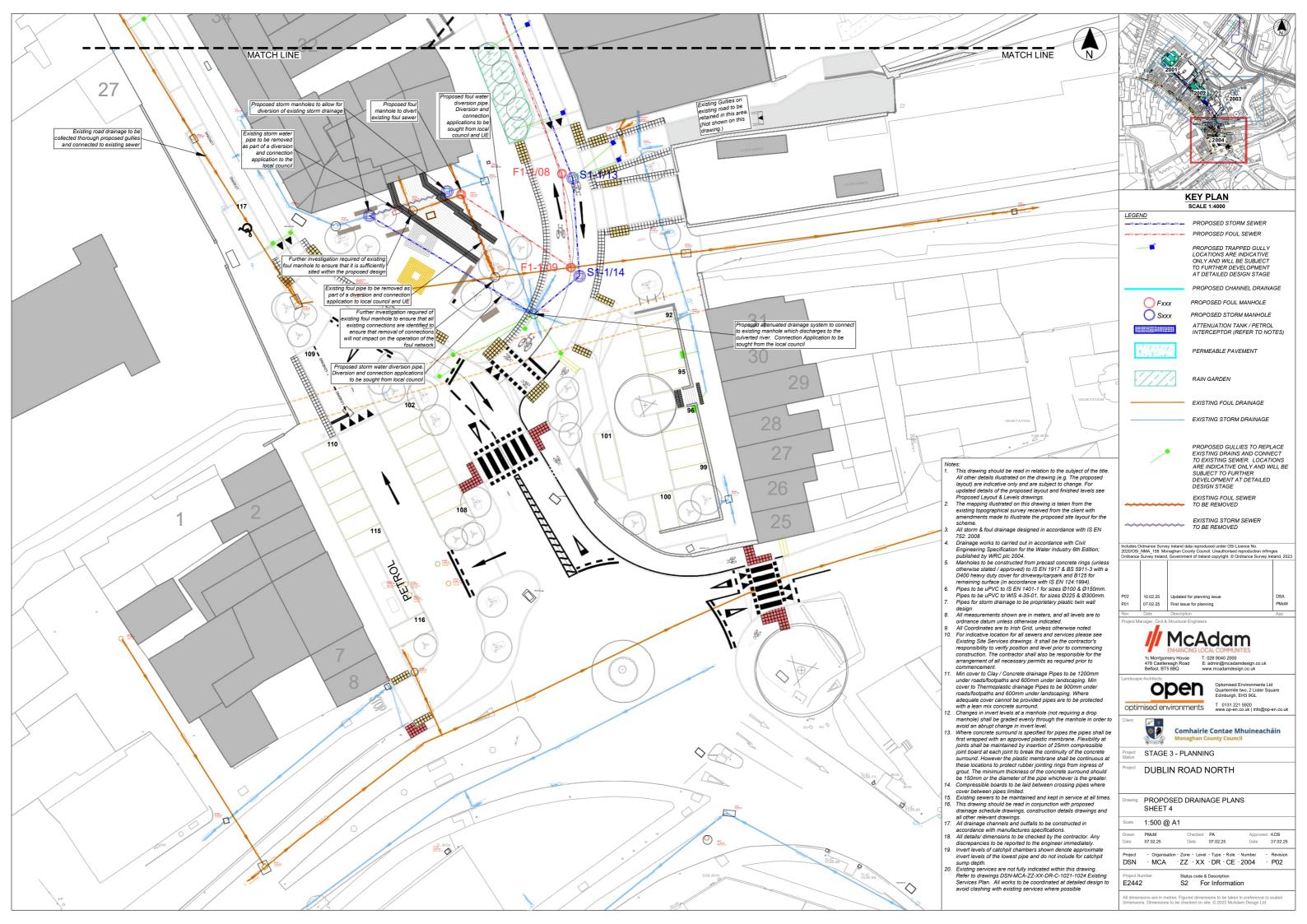
Flood Zone A -1 in 100 year or 1% AEP. Flood Zone B - 1 in 1000 year or 0.1% AEP.

,	
Flood Zone mapping data source	CFRAM Flood Risk Review (PRFA)
Historical Flooding	Recurring flood events due to fluvial flooding. Flooding events were recorded to have occurred in Oct. 2011, July
	2011, Nov. 2009, Dec 2009, Aug. 2008, Feb, 1990
Comment	Monaghan Town is one of four AFAs in County Monaghan. To consider and apply the recommendations as set out in the FRMP for Monaghan.
Conclusion	Implement Flood Risk Management policies of CDP.




Appendix B – Proposed Site Layout





Appendix C – Drainage Drawings

Client: Monaghan County Council

Project : E2442 – Dublin Street North Drainage Assessment

PREPARED BY	CHECKED BY	APPROVED BY	ISSUE	DATE
P McMath	P Alcorn	P Alcorn	1	12/11/2024
K O'Sullivan	P Alcorn	P Alcorn	2	07/02/2025
D. Anderson	P Alcorn	P Alcorn	3	24/02/2025

"The contents of this report and the results, recommendations and advices set out therein are based upon the information, drawings, samples and tests referred to in the report. McAdam Design Ltd accept no liability for any loss, damage, charges, costs (including, but not limited to legal costs) or expenses in respect of or in relation to any loss or damage howsoever arising or other loss occasioned by reason of any negligence, error, mistake or negligent misstatement on the part of McAdam Design Ltd, their servants or agents howsoever arising either directly or indirectly from the use of, or reliance on, this report or the carrying out of any recommendations or advice contained in this report or from the use of any plant, machinery, structures, goods or materials referred to in this report. This report is for the sole use of the person(s) or company to whom it is addressed. No part of this report may be copied, reproduced or referred to in whole or in part without the express written permission of McAdam Design Ltd. McAdam Design Ltd accepts no liability to Third Parties arising from their use or reliance on this report or the results, recommendations and advices set out therein."

Contents

1	Introduction	4
2	Site Location, Description and Proposed Development	5
3	Proposed Storm Water Drainage Strategy	7
4	Proposed Foul Water Drainage Strategy	10
5	Conclusion	11
Appendio	ces	12
Appendix	∢ A − Existing Site Topographical Survey	13
Appendix	c B – Proposed Site Layout	14
Appendix	c C – Proposed Storm Design - Un-Restricted Runoff Calculations	15
Appendix	c D – Proposed Drainage Layout	16
Appendix	c E – Proposed Storm Design - Restricted Runoff Calculations	17

1 Introduction

1.1 Report Brief and Scope

This report is in relation to the proposed regeneration of land at Dublin Street Backlands, including Dublin St, Backlands to the north of Dublin Street, The Diamond Centre car park and Old Cross Square, Monaghan.

This Drainage Strategy has been completed in relation to the current proposed works as illustrated within the planning application.

The development will further consist of:

- Creation of new shared surface, 'Russell Row' to the rear of properties fronting Dublin Street
- New Car park / event space at Russell Row
- Public realm improvements along Dublin Street to include resurfacing, new pedestrian pavements (including widening),.
- Public realm improvements to include the creation of urban civic spaces, pedestrian pavements, steps, cycle routes, street furniture
- Creation of new public 'Community Garden' area.
- Creation of future development plots
- Reinforcement of existing vegetation and new soft landscaping throughout.

The drainage strategy and drainage design proposals have been developed to facilitate the full extent of the proposed scheme design.

This drainage strategy report will review the proposed development with regards to drainage infrastructure requirements with the following considerations.

- Site Topography
- Storm Drainage design
- Foul Drainage Design
- Potential Future development

2 Site Location, Description and Proposed Development

2.1 Site Location and Context

Monaghan Town is strategically located at the intersection of the N2 Dublin- Derry/ Letterkenny and N54 Belfast- Galway National Routes, linking Dublin to the North-West and Belfast to the Midlands. The town also acts as a key east-west corridor which links Dundalk and Newry to Sligo. Monaghan resides in the Northwestern Regional Assembly Sub Region and has been identified as a Key Town in the Regional and Economic Strategy for this area. Monaghan Town plays a primary role in supporting the economic needs of its large rural hinterland in regard to performing employment, retailing and administrative functions.

The proposed development will assist the regeneration of Dublin Street and back lands to the north, the Diamond Centre Car Park and Old Cross Square

A Site Location and Boundary Map is presented in Figure 1 below.

Figure 1 – Site Location and Boundary

2.2 Existing Site Description

The site is bounded by Dublin Street to the West and N54 Broad Road to the south. The greenfield area to the east of the site is proposed to be developed by Monaghan County Council as their proposed Civic Offices development. The site generally falls from East to West from approximately 66.0m AOD on the edge of the agricultural fields to approximately 58m AOD on Dublin Street.

The Existing Topographical Survey has been presented as Appendix A.

2.3 Proposed Site Development Plans

The development proposals assessed in this Drainage Assessment include the following:

- Construction of a new street at the rear of the existing buildings on Dublin Street.
- Construction of a new car park.
- Access improvements to existing car park.

Public Realm improvements along Dublin St show realignment of kerblines and associated relocation of road gullies. There are no other changes to the drainage network on Dublin St.

A Proposed Site Layout Plan has been presented as Appendix B.

2.4 Potential Future development Plans

In addition to this proposed development Monaghan County Council intent to use this project to rejuvenate developments in the area. These developments may include residential and light industrial units. It if further noted all proposals for these potential developments will be subject to their own separate planning applications.

3 Proposed Storm Water Drainage Strategy

3.1 Introduction

In order to assess the drainage requirements a review of pre-development and post development runoff is required.

3.2 Pre-Development Runoff

The existing site is a mixture between brownfield and greenfield nature, comprising the rear gardens, and derelict spaces to the rear of the properties along Dublin St. It is the intention to maintain brownfield runoff rates / infrastructure where possible. Where within Greenfield areas, the discharge figure for the development has been limited to the 'greenfield' run-off rate of 2l/s/ha (litres/second/hectare) as the Greater Dublin Regional Code of Practice for Drainage Works Version 6.0.

Adjoining the site, there are two development plot area for potential future development. Provision has been allowed for in this scheme for the storm water from these plots to connect to the proposed drainage network. They have been designed at the equivalent greenfield runoff rate for the specific area. It will be the future developers' design criteria to maintain these flows withing specific drainage designs & associated planning applications.

The current area, which is part of this development, to the North of Old Cross is currently draining unattenuated into the existing discharge manhole. Based on a 50mm rainfall event, on an area of 346m², the discharge flow is 4.57l/s. As this is not a change from existing, this discharge flow has been included in the overall flow control for the proposed area.

3.3 Post-Development Runoff

The proposed site development consists of a combination of hardstanding (vehicular pavements, car park, footpaths, access and soft landscaping areas and subsequently will result in an increase of impermeable surfacing.

Table 6-3 of the Urban Storm Drainage Critical Manual (Volume 1 January 2016) presents the percentage imperviousness from different land uses or surface characteristics for the purpose of calculating runoff rates. For the Hardstanding areas the runoff coefficient is 100% for paved areas. For the Landscape areas the closest category within the table would be Parks / Cemeteries which illustrate the runoff coefficient as 10%.

In order to provide a robust design solution, the drainage calculations detailed within this report have been based on all landscaped areas as 20% runoff coefficient.

The storm sewer network has been modelled and the unrestricted discharge figures for the 1 in 1, 1 in 30 and 1 in 100 year Return Periods including 10% allowance for climate change are summarised in Table 1 below. A copy of the unrestricted discharge drainage calculations is provided in Appendix C for the site.

Return Period	Redevelopment Discharge Q (I/s) (Unrestricted)
1 in 1 +10%	79.3
1 in 30 +10%	195.3
1 in 100 +10%	250.6

Table 1: Post development discharge - Unrestricted

3.4 Comparison of Pre and Post Development Storm Water Discharges

With the addition of impermeable surfaces the post development discharge exceeds the pre development discharge for all returns, a restricted discharge to the equivalent 'Greenfield' runoff rate with storm water attenuation will be required.

Along Dublin Street and the nearby side streets, the gullies are to be rationalised and replaced in this area, to discharge as existing, so there will be no change in flow in this area, hence it is not considered in the calculations.

3.5 Proposed Site Storm Drainage and discharge

It is proposed to maintain the existing pre-development 'Greenfield' run-off rate of 2l/s/ha as outlined in Greater Dublin Regional Code of Practice for Drainage Works Version 6.0 and ensure the overall volumes are not exceeded over the lifespan of the development. As noted previously, when the proposed area greenfield runoff is added to the 2 proposed future development areas and the existing unrestricted flow, the total proposed discharge flow is 6.5l/s

In order to achieve the restricted 'Greenfield' run-off rate: permeable pavements, rain gardens, attenuation tanks and discharge flow controls limiting the storm water discharge from the development are included within the drainage design. The attenuation tanks are situated at each car park with flow controls, with the final discharge location at the Dublin Street roundabout.

A proposed storm network has been developed with consideration of the site proposals noted above. The proposed storm sewers will collect the storm water via the SuDS proposals as listed above, as well as road gullies and land drains and convey the flows through a dedicated gravity storm sewer following the falls of the proposed road network (where achievable) discharging the collected flows to the watercourse to the Southeast of the site. The proposed drainage layout is provided in Appendix D.

The storm sewer network has been modelled and the restricted discharge figures for the 1 in 1, 1 in 30 and 1 in 100 year Return Periods including 10% allowance for climate change are summarised in Table 3 below.

The modelling has resulted in several cascading SuDS proposals, with associated flow control restricting the discharge to 6.5l/s. A copy of the post development calculation inclusive of restricted flow / attenuation is provided in Appendix E.

Return Period	Redevelopment Discharge Q (I/s) (Restricted)
1 in 1 +10%	5.5
1 in 30 +10%	5.7
1 in 100 +10%	6.5

Table 3: Post development discharge – Restricted

3.6 Surface Water (Pluvial) Flood Risk

The proposed scheme design layout & levels along with the storm drainage design inclusive of new storm sewer networks, restricted runoff rates and attenuation have been designed within the below criteria.

• The drainage can be surcharged with no flooding with a freeboard of 300mm and a 10% Climate Change for 1 in 1 year; 1 in 30 year, and a 1 in 100 year storm event.

Based on the design strategy & proposed drainage infrastructure proposed flood risk will not be increased within or beyond the site boundary as a result of the proposed development.

4 Proposed Foul Water Drainage Strategy

There is no foul run-off generated directly by the works envisaged by the scheme design as set out in the Application for Development.

The scheme design does create two Development Plots which will be developed in the future as a mix of commercial / residential properties. In order to cater for the future foul flow generated by the Development Plots, a foul drainage sewer has been provided along Russell Row, with spur connections to the Development Plots.

The proposed foul drainage includes connections at each potential future development site which will convey flows through the proposed gravity pipework system. All foul drainage proposals will be designed strictly in accordance with Uisce Éireann standards, and all required UE approvals will be in place prior to construction.

A copy of the proposed drainage layout can be found in Appendix D.

5 Conclusion

This Drainage Assessment (DA) has been completed with a review of the existing & proposed development site to illustrate the infrastructure proposed.

The site is located adjacent to the National Primary Road (N14) and is within the defined settlement framework boundary of Lifford.

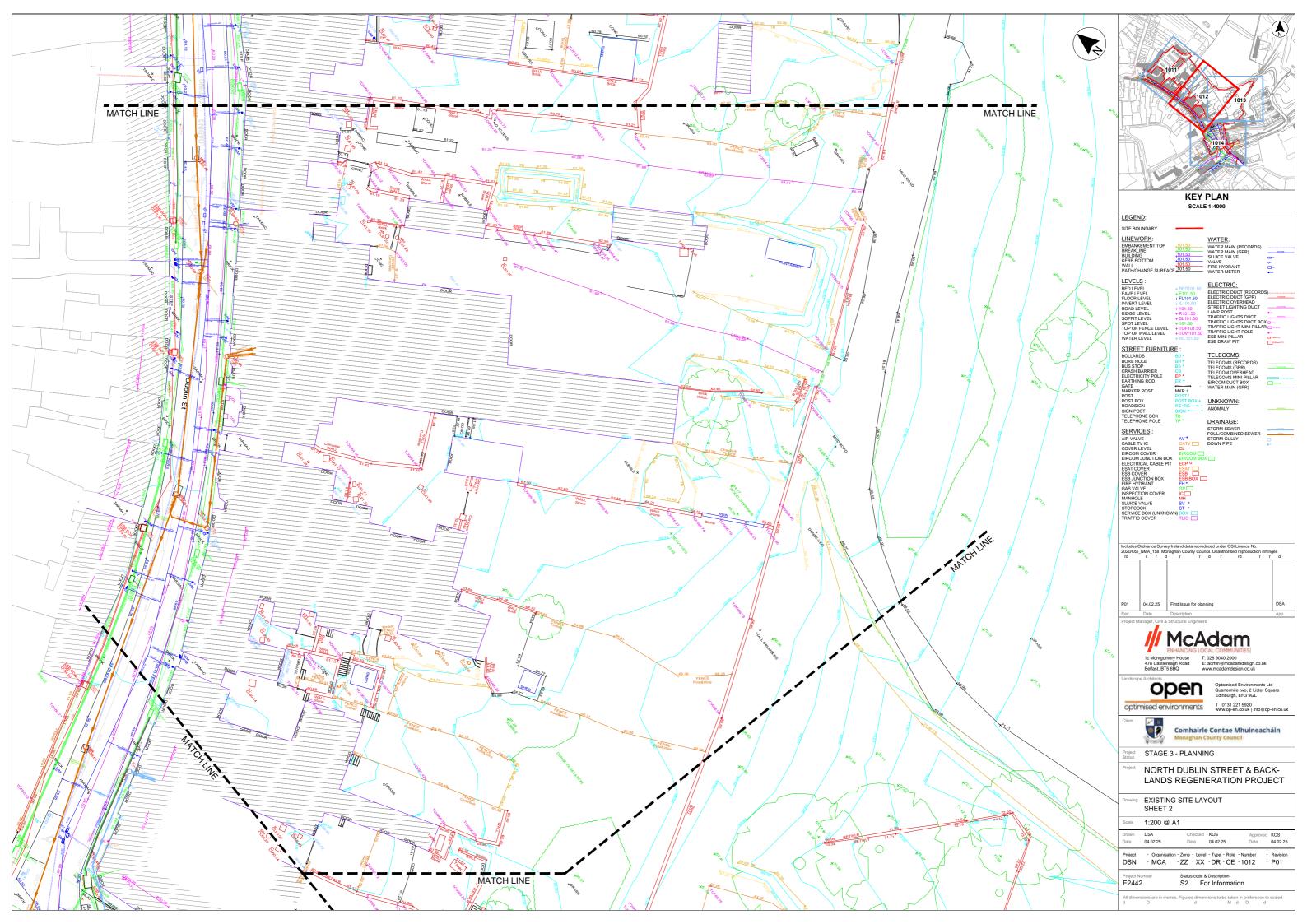
The site is of 'Brownfield' nature, irregular in shape and consists of backlands areas to residential and commercial properties on Dublin St. The development area is located to the northeast of the town centre, extending from The Diamond to the northwest, south-eastwards along Dublin Street, and is defined to the southeast by Old Cross Square. Access from Dublin is facilitated via the M1 and N2, approximately 130km northbound and access from Belfast is via M1 and N2, approximately 91km to the southwest. The levels on the site vary between 68m Above Ordnance Datum (AOD) (in the east) and 59mAOD (in the south). The base level of the region and the site are the Ulster Canal and the River Shambles, which on the site are at levels of around 59mAOD. A desktop FRA has been completed by McAdam Design & issued along with this planning application.

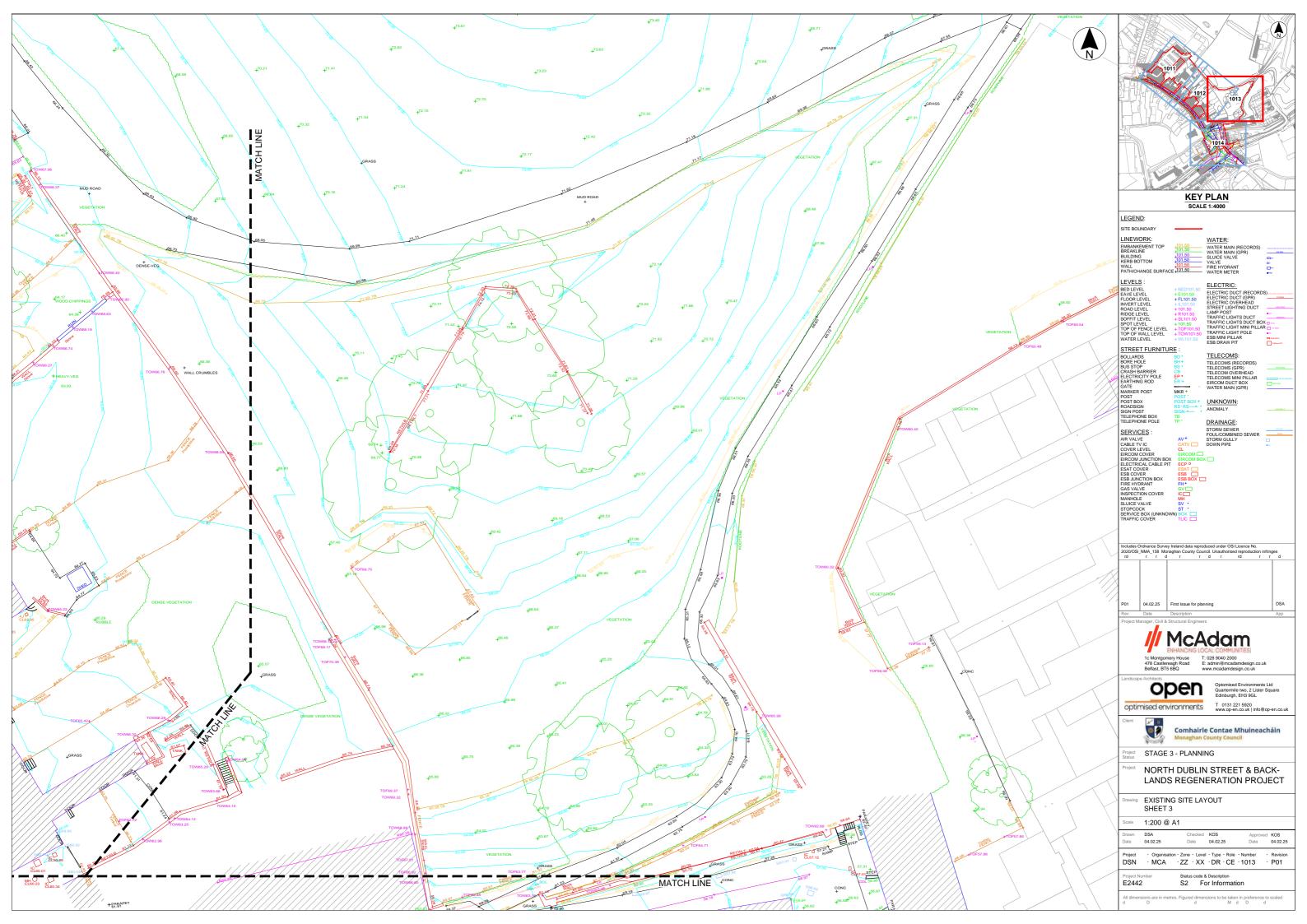
Calculations are presented that show the proposed storm drainage network for the development will not exceed current 'Brownfield' run-off rates to the discharging sewer with the inclusion of appropriately sized storm water attenuation and associated flow control.

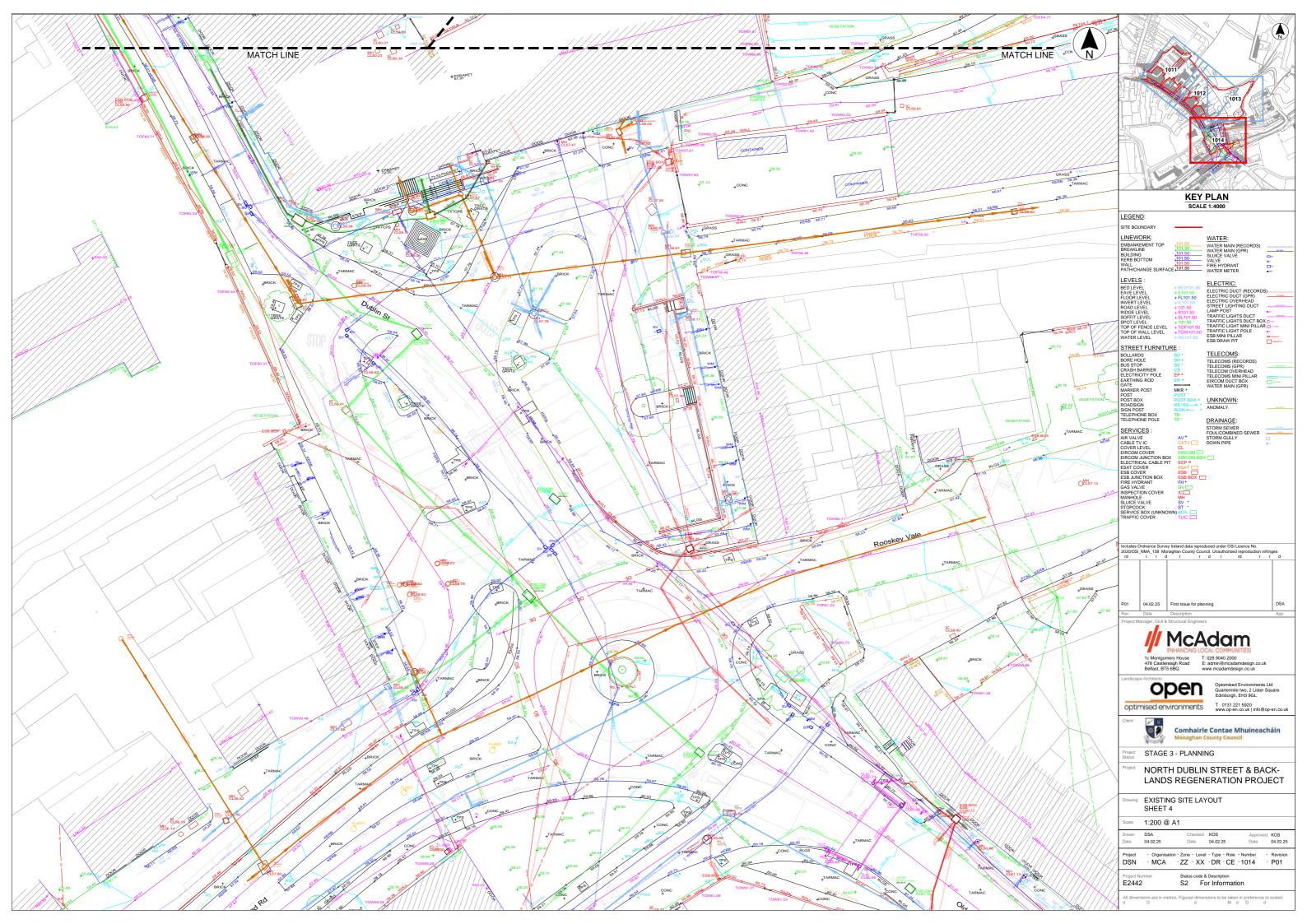
With consideration of the drainage strategy and the surface water mitigation measures for the scheme illustrated above, flood risk from pluvial flooding will be managed at the development and will not increase the runoff elsewhere. Proposed levels have been developed to ensure that no properties will be subject to flooding in the event that a local drainage system failure should occur.

In addition, foul sewerage is proposed to discharge to Irish Water infrastructure if potential future developments occupy the site. These will be further illustrated in separate dedicated planning applications as necessary.

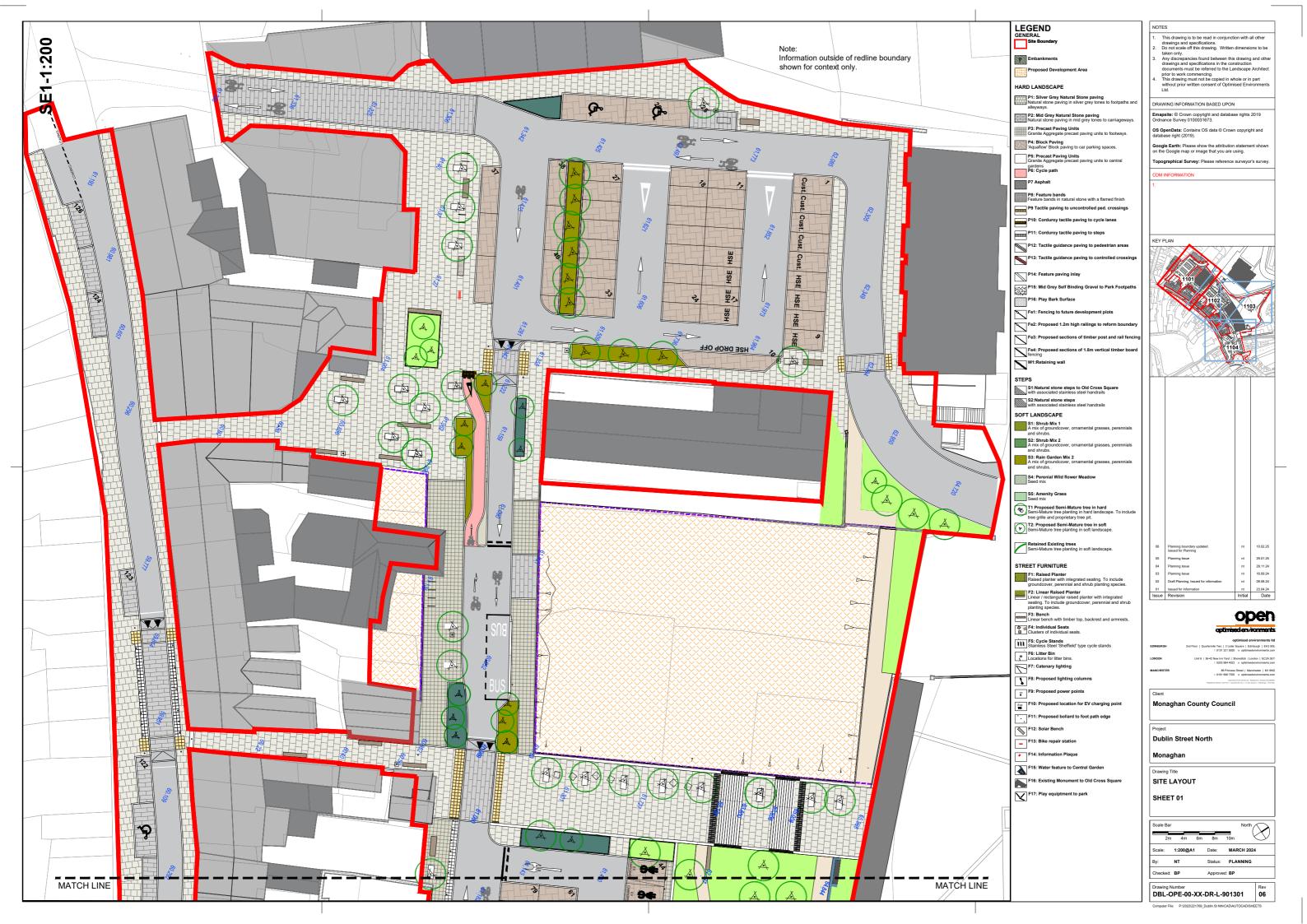
A copy of the Proposed Drainage Layout is provided in Appendix D.

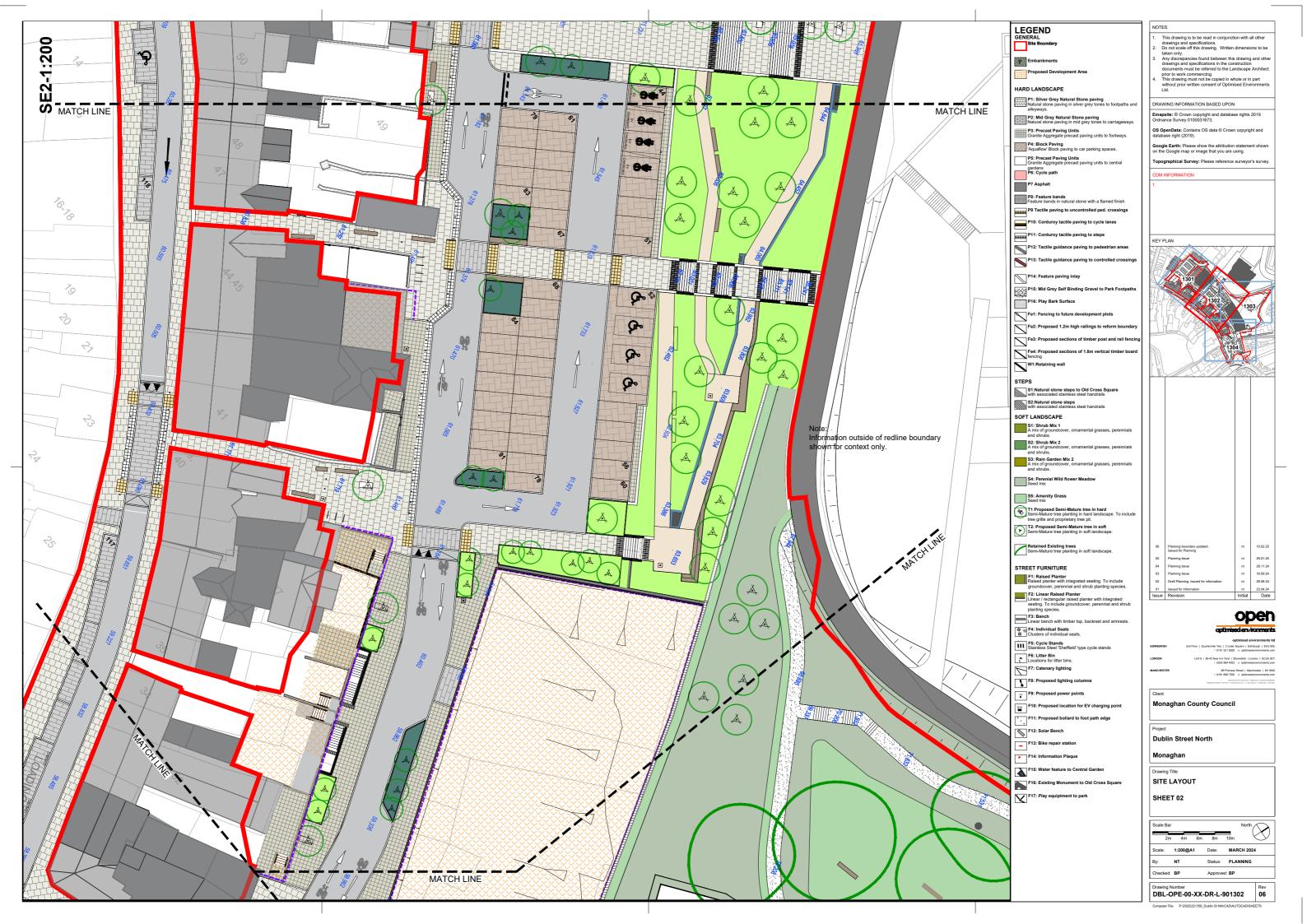


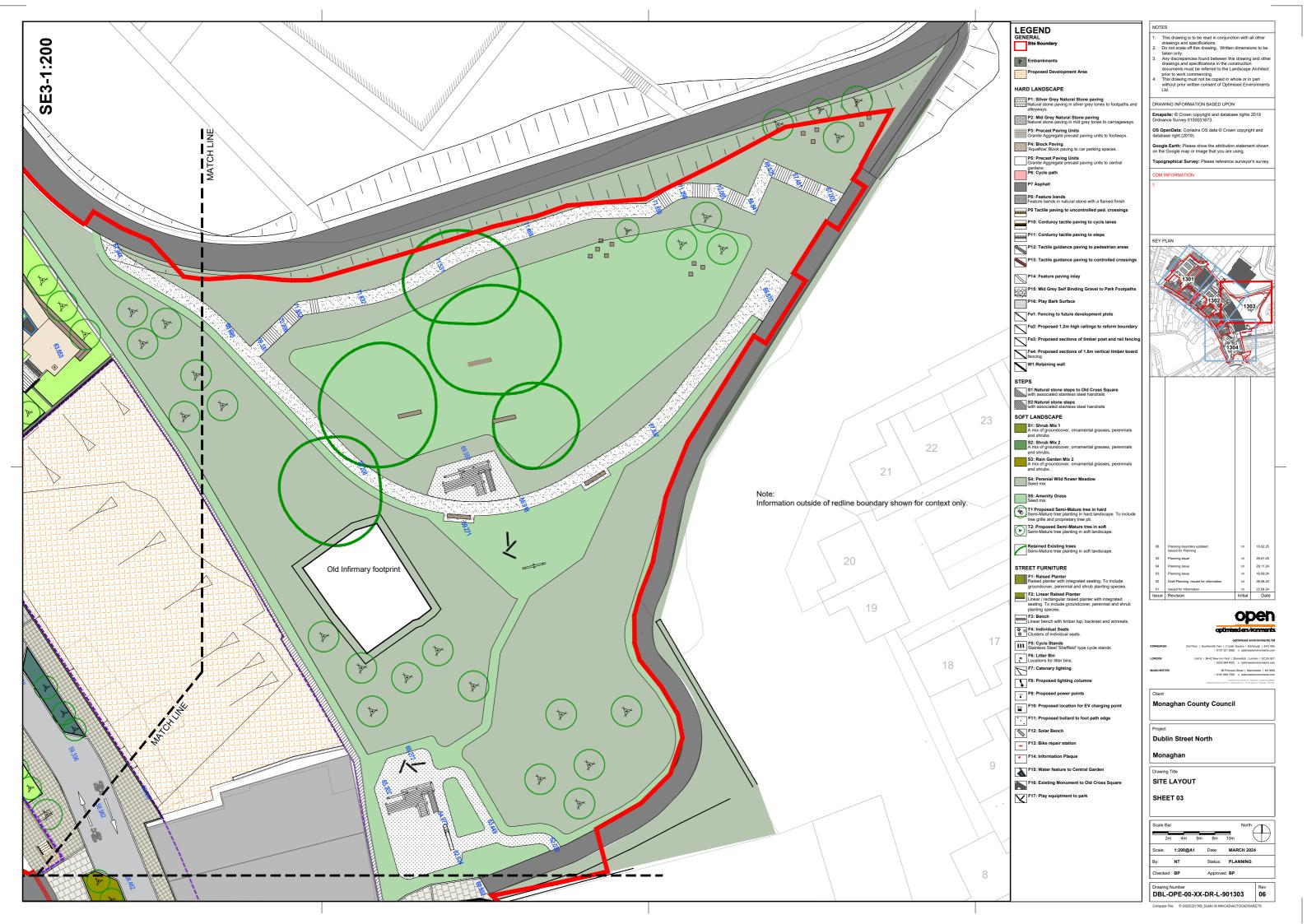

Appendices

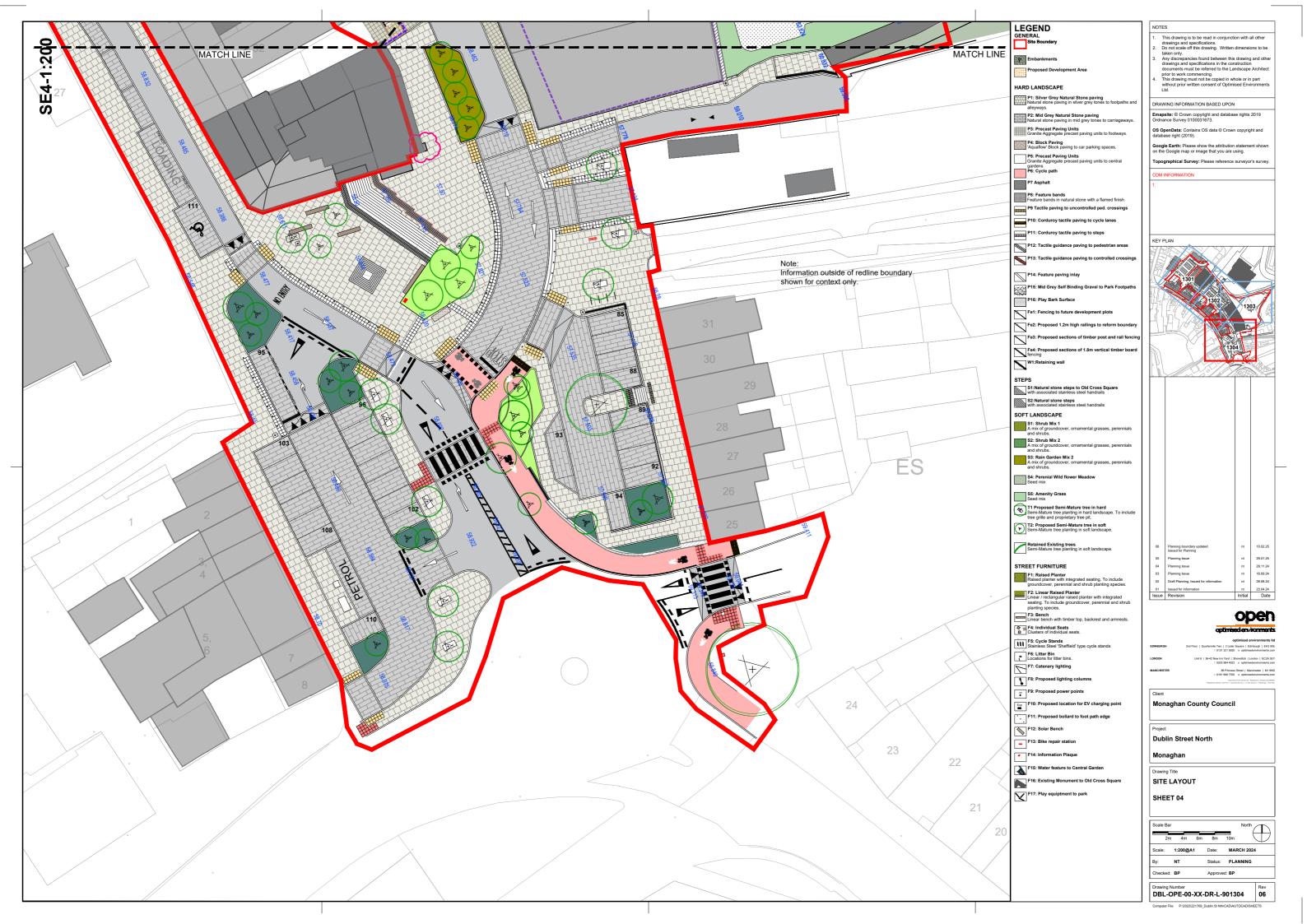


Appendix A – Existing Site Topographical Survey









Appendix B – Proposed Site Layout

Appendix C — Proposed Storm Design - Un-Restricted Runoff Calculations

McAdam Design		Page 1
1C Montgomery House	Dublin Street North	
Castlereagh Business Park	Storm Water Flow	
478 Castlereagh Rd, Belfast,	Unrestricted	Mirro
Date 03/02/2025	Designed by PMcM	Drainage
File 2025-01-31 Dublin Stree	Checked by PA	Diamage
Innovyze	Network 2020.1.3	

STORM SEWER DESIGN by the Modified Rational Method

Network Design Table for Storm

PN	Length	Fall	Slope	I.Area	T.E.	Ba	ise	k	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow	(1/s)	(mm)	SECT	(mm)		Design
1 000	10 000	0 460	20.0	0 0 0 0 0	- 00		0 0	0 600		200	-1 /- 1 ! :	
	13.800		30.0	0.072	5.00			0.600	0		Pipe/Conduit	0
	14.800		100.0	0.068	0.00		0.0	0.600	0	300	Pipe/Conduit	0
1.002	13.800	0.138	100.0	0.080	0.00		0.0	0.600	0	300	Pipe/Conduit	₩
1.003	6.000	0.060	100.0	0.025	0.00		0.0	0.600	0	300	Pipe/Conduit	•
1.004	20.571	0.206	99.9	0.034	0.00		0.0	0.600	0	300	Pipe/Conduit	- P
1.005	9.417	0.094	100.2	0.015	0.00		0.0	0.600	0	300	Pipe/Conduit	Ğ
1.006	16.932	0.169	100.2	0.043	0.00		0.0	0.600	0	300	Pipe/Conduit	ě
1.007	20.134	0.101	199.3	0.024	0.00		0.0	0.600	0	300	Pipe/Conduit	•
1.008	52.378	0.524	100.0	0.035	0.00		0.0	0.600	0	300	Pipe/Conduit	8
											1 - 7	
2.000	11.200	0.112	100.0	0.031	5.00		0.0	0.600	0	300	Pipe/Conduit	ð
											1	
3.000	13.300	0.443	30.0	0.020	5.00		0.0	0.600	0	300	Pipe/Conduit	ð
											1 - 7	
2.001	21.000	0.210	100.0	0.041	0.00		0.0	0.600	0	300	Pipe/Conduit	6
2.001	21.000	0.210	100.0	0.011	0.00		0.0	0.000	Ü	000	ripo, conduito	w
4.000	9.600	0 480	20.0	0.011	5.00		0 0	0.600	0	300	Pipe/Conduit	ð
1.000	3.000	0.100	20.0	0.011	3.00		0.0	0.000	O	300	ripe/conduic	w
2.002	31,200	0 312	100 0	0.008	0.00		0 0	0.600	0	300	Pipe/Conduit	₽
2.002	8.700	0.087		0.040	0.00			0.600	0		Pipe/Conduit	
											-	Ř.
2.004	9.000	0.090	100.0	0.035	0.00		0.0	0.600	0	300	Pipe/Conduit	0

Network Results Table

PN	Rain	T.C.	US/IL	Σ I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow	
	(mm/hr)	(mins)	(m)	(ha)	Flow (1/s)	(1/s)	(1/s)	(m/s)	(1/s)	(1/s)	
1.000	50.00	5.08	60.666	0.072	0.0	0.0	0.0	2.88	203.7	9.7	
1.001	50.00	5.24	60.202	0.140	0.0	0.0	0.0	1.57	111.1	19.0	
1.002	50.00	5.38	60.054	0.220	0.0	0.0	0.0	1.57	111.1	29.8	
1.003	50.00	5.45	59.916	0.245	0.0	0.0	0.0	1.57	111.1	33.2	
1.004	50.00	5.66	59.856	0.279	0.0	0.0	0.0	1.57	111.2	37.8	
1.005	50.00	5.76	59.650	0.294	0.0	0.0	0.0	1.57	111.0	39.8	
1.006	50.00	5.94	59.556	0.337	0.0	0.0	0.0	1.57	111.0	45.6	
1.007	50.00	6.25	59.387	0.361	0.0	0.0	0.0	1.11	78.5	48.9	
1.008	50.00	6.80	59.286	0.396	0.0	0.0	0.0	1.57	111.2	53.6	
2.000	50.00	5.12	59.100	0.031	0.0	0.0	0.0	1.57	111.1	4.2	
3.000	50.00	5.08	60.731	0.020	0.0	0.0	0.0	2.88	203.7	2.7	
2.001	50.00	5.34	58.988	0.092	0.0	0.0	0.0	1.57	111.1	12.5	
4.000	50.00	5.05	60.840	0.011	0.0	0.0	0.0	3.53	249.6	1.5	
2.002	50.00	5.67	58.778	0.111	0.0	0.0	0.0	1.57	111.1	15.0	
2.003	50.00	5.76	58.466	0.151	0.0	0.0	0.0	1.57	111.1	20.4	
2.004	50.00	5.86	58.379	0.186	0.0	0.0	0.0	1.57	111.1	25.2	
				@1982-1	2020 Innov	7776					
				O1702 2	-020 IIIIOV	y 2 C					

McAdam Design		Page 2
1C Montgomery House	Dublin Street North	
Castlereagh Business Park	Storm Water Flow	
478 Castlereagh Rd, Belfast,	Unrestricted	Mirro
Date 03/02/2025	Designed by PMcM	Desinado
File 2025-01-31 Dublin Stree	Checked by PA	Dialilade
Innovyze	Network 2020.1.3	

STORM SEWER DESIGN by the Modified Rational Method

Network Design Table for Storm

	PN	Length	Fall	Slope	I.Area	T.E.	Ba	ıse	k	HYD	DIA	Section Type	Auto
		(m)	(m)	(1:X)	(ha)	(mins)	Flow	(1/s)	(mm)	SECT	(mm)		Design
1	.009	17.900	0.095	188.4	0.128	0.00		0.0	0.600	0	375	Pipe/Conduit	₩
1	.010	36.768	1.671	22.0	0.092	0.00		0.0	0.600	0	375	Pipe/Conduit	₩
1	.011	23.200	0.913	25.4	0.023	0.00		0.0	0.600	0	375	Pipe/Conduit	
1	.012	12.619	0.158	79.9	0.035	0.00		0.0	0.600	0	450	Pipe/Conduit	
1	.013	7.642	0.831	9.2	0.000	0.00		0.0	0.600	0	450	Pipe/Conduit	

Network Results Table

PN	Rain	T.C.	US/IL	Σ I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(ha)	Flow (1/s)	(1/s)	(1/s)	(m/s)	(1/s)	(1/s)
1.009	50.00	7.03	58.214	0.710	0.0	0.0	0.0	1.32	145.4	96.1
1.010	50.00	7.19	58.119	0.802	0.0	0.0	0.0	3.88	428.3	108.6
1.011	50.00	7.29	56.448	0.825	0.0	0.0	0.0	3.61	398.4	111.7
1.012	50.00	7.39	55.460	0.860	0.0	0.0	0.0	2.28	362.1	116.5
1.013	50.00	7.40	55.302	0.860	0.0	0.0	0.0	6.73	1070.8	116.5

McAdam Design						
1C Montgomery House	Dublin Street North					
Castlereagh Business Park	Storm Water Flow					
478 Castlereagh Rd, Belfast,	Unrestricted	Micro				
Date 03/02/2025	Design and less DMaM	Drainage				
File 2025-01-31 Dublin Stree	Checked by PA	Diamage				
Innovyze	Network 2020.1.3					

Manhole Schedules for Storm

MH Name	MH CL (m)	MH Depth (m)	Coni	MH nection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
S1-1/01	61.866	1.200	Open	Manhole	1200	1.000	60.666	300				
S1-1/02	61.402	1.200	Open	Manhole	1200	1.001	60.202	300	1.000	60.206	300	4
S1-1/03	61.296	1.242	Open	Manhole	1200	1.002	60.054	300	1.001	60.054	300	
S1-1/04	61.266	1.350	Open	Manhole	1200	1.003	59.916	300	1.002	59.916	300	
S1-1/05	61.349	1.493	Open	Manhole	1200	1.004	59.856	300	1.003	59.856	300	
S1-1/06	61.083	1.433	Open	Manhole	1200	1.005	59.650	300	1.004	59.650	300	
S1-1/07	60.999	1.443	Open	Manhole	1200	1.006	59.556	300	1.005	59.556	300	
S1-1/08	60.870	1.483	Open	Manhole	1200	1.007	59.387	300	1.006	59.387	300	
S1-1/09	61.184	1.898	Open	Manhole	1200	1.008	59.286	300	1.007	59.286	300	
S1-2/01	61.100	2.000	Open	Manhole	1200	2.000	59.100	300				
S1-3/01	61.931	1.200	Open	Manhole	1200	3.000	60.731	300				
S1-2/02	61.500	2.512	Open	Manhole	1200	2.001	58.988	300	2.000	58.988	300	
									3.000	60.288	300	1300
S1-4/01	62.040	1.200	Open	Manhole	1200	4.000	60.840	300				
S1-2/03	61.700	2.922	Open	Manhole	1200	2.002	58.778	300	2.001	58.778	300	
									4.000	60.360	300	1582
S1-2/04	62.072	3.606	Open	Manhole	1200	2.003	58.466	300	2.002	58.466	300	
S1-2/05	61.826	3.447	Open	Manhole	1200	2.004	58.379	300	2.003	58.379	300	
S1-1/10	61.489	3.275	Open	Manhole	1350	1.009	58.214	375	1.008	58.762	300	473
									2.004	58.289	300	
S1-1/11	60.593	2.474	Open	Manhole	1350	1.010	58.119	375	1.009	58.119	375	
S1-1/12	58.739	2.291	Open	Manhole	1350	1.011	56.448	375	1.010	56.448	375	
S1-1/13	57.816	2.356	Open	Manhole	1350	1.012	55.460	450	1.011	55.535	375	
S1-1/14	57.931	2.629	Open	Manhole	1350	1.013	55.302	450	1.012	55.302	450	
	57.931	3.460	Open	Manhole	300		OUTFALL		1.013	54.471	450	

No coordinates have been specified, layout information cannot be produced.

McAdam Design		Page 4	
1C Montgomery House	Dublin Street North		
Castlereagh Business Park	Storm Water Flow		
478 Castlereagh Rd, Belfast,	Unrestricted	Mirro	
Date 03/02/2025	Designed by PMcM	Designation	
File 2025-01-31 Dublin Stree	Checked by PA	Diamage	
Innovyze	Network 2020.1.3		

PIPELINE SCHEDULES for Storm

<u>Upstream Manhole</u>

PN	Hyd	Diam	MH	C.Level	I.Level	D.Depth	MH	MH DIAM., L*W
	Sect	(mm)	Name	(m)	(m)	(m)	Connection	(mm)
1.000	0	300	S1-1/01	61.866	60.666	0.900	Open Manhole	1200
1.001	0		S1-1/02				Open Manhole	
1.002	0		S1-1/03				Open Manhole	
1.003	0		S1-1/04				Open Manhole	
1.004	0		S1-1/05				Open Manhole	
1.005	0		S1-1/06				Open Manhole	
1.006	0		S1-1/07				Open Manhole	
1.007	0		S1-1/08				Open Manhole	
1.008	0	300	S1-1/09	61.184	59.286		Open Manhole	
							<u>-</u>	
2.000	0	300	S1-2/01	61.100	59.100	1.700	Open Manhole	1200
3.000	0	300	S1-3/01	61.931	60.731	0.900	Open Manhole	1200
2.001	0	300	S1-2/02	61.500	58.988	2.212	Open Manhole	1200
4.000	0	300	S1-4/01	62.040	60.840	0.900	Open Manhole	1200
2.002	0		S1-2/03				Open Manhole	
2.003	0	300	S1-2/04	62.072	58.466	3.306	Open Manhole	1200
2.004	0	300	S1-2/05	61.826	58.379	3.147	Open Manhole	1200

<u>Downstream Manhole</u>

PN	Length	Slope	MH	C.Level	I.Level	D.Depth	MH	MH DIAM., L*W
	(m)	(1:X)	Name	(m)	(m)	(m)	Connection	(mm)
1 000	13 800	30 0	S1-1/02	61.402	60.206	n 896	Open Manhole	1200
			S1-1/03				Open Manhole	
			S1-1/04				Open Manhole	
			S1-1/05	61.349			Open Manhole	
1.004	20.571	99.9	S1-1/06	61.083	59.650	1.133	Open Manhole	1200
1.005	9.417	100.2	S1-1/07	60.999	59.556	1.143	Open Manhole	1200
1.006	16.932	100.2	S1-1/08	60.870	59.387	1.183	Open Manhole	1200
1.007	20.134	199.3	S1-1/09	61.184	59.286	1.598	Open Manhole	1200
			S1-1/10				Open Manhole	
1.000	02.070	100.0	D1 1/10	01.103	30.702	2.12,	open namore	1000
2.000	11.200	100.0	s1-2/02	61.500	58.988	2.212	Open Manhole	1200
3.000	13.300	30.0	S1-2/02	61.500	60.288	0.912	Open Manhole	1200
			,					
2.001	21.000	100.0	s1-2/03	61.700	58.778	2.622	Open Manhole	1200
4.000	9.600	20.0	S1-2/03	61.700	60.360	1.040	Open Manhole	1200
2.002	31.200	100.0	S1-2/04	62.072	58.466	3.306	Open Manhole	1200
2.003	8.700	100.0	S1-2/05	61.826	58.379	3.147	Open Manhole	1200
2.004	9.000	100.0	S1-1/10	61.489	58.289		Open Manhole	
			/ -0		22.203	,,,,		2000
				©1982-	2020 In	novyze		

McAdam Design		Page 5
1C Montgomery House	Dublin Street North	
Castlereagh Business Park	Storm Water Flow	
478 Castlereagh Rd, Belfast,	Unrestricted	Mirro
Date 03/02/2025	Designed by PMcM	Desinado
File 2025-01-31 Dublin Stree	Checked by PA	Diamage
Innovyze	Network 2020.1.3	

PIPELINE SCHEDULES for Storm

<u>Upstream Manhole</u>

PN	Hyd	Diam	MH	C.Level	I.Level	D.Depth	MH	MH DIAM., L*W
	Sect	(mm)	Name	(m)	(m)	(m)	Connection	(mm)
1.009	0	375	S1-1/10	61.489	58.214	2.900	Open Manhole	1350
1.010	0	375	S1-1/11	60.593	58.119	2.099	Open Manhole	1350
1.011	0	375	S1-1/12	58.739	56.448	1.916	Open Manhole	1350
1.012	0	450	S1-1/13	57.816	55.460	1.906	Open Manhole	1350
1.013	0	450	S1-1/14	57.931	55.302	2.179	Open Manhole	1350

<u>Downstream Manhole</u>

PN	Length	Slope	MH	C.Level	I.Level	${\tt D.Depth}$	MH	MH DIAM., L*W
	(m)	(1:X)	Name	(m)	(m)	(m)	Connection	(mm)
1.009	17.900	188.4	S1-1/11	60.593	58.119	2.099	Open Manhole	1350
1.010	36.768	22.0	S1-1/12	58.739	56.448	1.916	Open Manhole	1350
1.011	23.200	25.4	S1-1/13	57.816	55.535	1.906	Open Manhole	1350
1.012	12.619	79.9	S1-1/14	57.931	55.302	2.179	Open Manhole	1350
1.013	7.642	9.2		57.931	54.471	3.010	Open Manhole	300

McAdam Design		Page 6
1C Montgomery House	Dublin Street North	
Castlereagh Business Park	Storm Water Flow	
478 Castlereagh Rd, Belfast,	Unrestricted	Mirro
Date 03/02/2025	Designed by PMcM	Drainage
File 2025-01-31 Dublin Stree	Checked by PA	Diamage
Innovyze	Network 2020.1.3	

Storage Structures for Storm

Porous Car Park Manhole: S1-1/01, DS/PN: 1.000

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	22.0
Membrane Percolation (mm/hr)	1000	Length (m)	5.0
Max Percolation (1/s)	30.6	Slope (1:X)	80.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	61.800	Membrane Depth (mm)	0

Porous Car Park Manhole: S1-1/02, DS/PN: 1.001

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	20.0
Membrane Percolation (mm/hr)	1000	Length (m)	10.0
Max Percolation $(1/s)$	55.6	Slope (1:X)	80.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	60.528	Membrane Depth (mm)	0

Porous Car Park Manhole: S1-1/03, DS/PN: 1.002

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	20.0
Membrane Percolation (mm/hr)	1000	Length (m)	10.2
Max Percolation (1/s)	56.7	Slope (1:X)	80.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	60.380	Membrane Depth (mm)	0

Cellular Storage Manhole: S1-1/06, DS/PN: 1.005

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²)

0.000	30.0	0.0	0.801	0.0	0.0
0.800	30.0	0.0			

Porous Car Park Manhole: S1-2/02, DS/PN: 2.001

10.0	Width (m)	0.00000	Infiltration Coefficient Base (m/hr)
17.0	Length (m)	1000	Membrane Percolation (mm/hr)
80.0	Slope (1:X)	47.2	Max Percolation (1/s)
5	Depression Storage (mm)	2.0	Safety Factor
3	Evaporation (mm/day)	0.30	Porosity
0	Membrane Depth (mm)	60.500	Invert Level (m)

McAdam Design	Page 7	
1C Montgomery House	Dublin Street North	
Castlereagh Business Park	Storm Water Flow	
478 Castlereagh Rd, Belfast,	Unrestricted	Mirro
Date 03/02/2025	Designed by PMcM	Drainage
File 2025-01-31 Dublin Stree	Checked by PA	Diamage
Innovyze	Network 2020.1.3	

Porous Car Park Manhole: S1-2/03, DS/PN: 2.002

5.0	Width (m)	0.00000	Infiltration Coefficient Base (m/hr)
22.0	Length (m)	1000	Membrane Percolation (mm/hr)
80.0	Slope (1:X)	30.6	Max Percolation (1/s)
5	Depression Storage (mm)	2.0	Safety Factor
3	Evaporation (mm/day)	0.30	Porosity
0	Membrane Depth (mm)	60.700	Invert Level (m)

Porous Car Park Manhole: S1-1/10, DS/PN: 1.009

Infiltration Coefficient Base (m/hr)	0 00000	Width (m)	20 0
		, ,	
Membrane Percolation (mm/hr)	1000	Length (m)	27.0
Max Percolation $(1/s)$	150.0	Slope (1:X)	80.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	59.500	Membrane Depth (mm)	0

Cellular Storage Manhole: S1-1/11, DS/PN: 1.010

Invert Level (m) 58.119 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth	(m)	Area	(m²)	Inf.	Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)
0.	000	1	110.0			0.0	1.	.201		0.0			0.0
1.	200	1	110.0			0.0							

McAdam Design		Page 8
1C Montgomery House	Dublin Street North	
Castlereagh Business Park	Storm Water Flow	
478 Castlereagh Rd, Belfast,	Unrestricted	Micro
Date 03/02/2025	Designed by PMcM	Desinado
File 2025-01-31 Dublin Stree	Checked by PA	Dialilade
Innovyze	Network 2020.1.3	

1 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 8 Number of Online Controls 0 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR Ratio R 0.331
Region Scotland and Ireland Cv (Summer) 0.750
M5-60 (mm) 18.200 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 300.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

DVD Status

ON

Inertia Status

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600,
720, 960, 1440, 2160, 2880, 4320, 5760,
7200, 8640, 10080
Return Period(s) (years) 1, 30, 100
Climate Change (%) 10, 10, 10

PN	US/MH Name	Storm		Climate Change		: (X) arge	First (Y) First (Z) Overflow	Overflow Act.	Water Level (m)
1.000	S1-1/01	15 Winter	1	+10%						60.715
	- , -	15 Winter	1		100/15	Summer				60.294
		15 Winter	1	+10%		Winter				60.169
		15 Winter	1	+10%		Summer				60.069
		15 Winter	1	+10%	100/15					59.982
		15 Winter	1	+10%		Winter				59.789
		15 Winter	1	+10%		Winter				59.688
1.007		15 Winter	1	+10%		Summer				59.553
1.008	S1-1/09	15 Winter	1	+10%						59.420
2.000	S1-2/01	15 Winter	1	+10%						59.145
3.000	S1-3/01	15 Winter	1	+10%						60.756
2.001	S1-2/02	15 Winter	1	+10%						59.060
4.000	S1-4/01	15 Winter	1	+10%						60.853
2.002	S1-2/03	15 Winter	1	+10%	100/15	Summer				58.852
2.003	S1-2/04	15 Winter	1	+10%	30/15	Summer				58.569
2.004	S1-2/05	15 Winter	1	+10%	30/15	Summer				58.493
1.009	S1-1/10	15 Winter	1	+10%	30/15	Summer				58.424
				©1982	-2020	Innovy	ze			

McAdam Design		Page 9
1C Montgomery House	Dublin Street North	
Castlereagh Business Park	Storm Water Flow	
478 Castlereagh Rd, Belfast,	Unrestricted	Mirro
Date 03/02/2025	Designed by PMcM	Drainage
File 2025-01-31 Dublin Stree	Checked by PA	Diamage
Innovyze	Network 2020.1.3	

$\frac{1 \text{ year Return Period Summary of Critical Results by Maximum Level (Rank 1)}}{\text{for Storm}}$

PN	US/MH Name	Surcharged Depth (m)		Flow /	Overflow (1/s)		Flow	Status	Level Exceeded
1.000	S1-1/01	-0.251	0.000	0.06		6	10.4	OK	
1.001	S1-1/02	-0.208	0.000	0.20		7	18.7	OK	
1.002	S1-1/03	-0.185	0.000	0.31		7	28.7	OK	
1.003	S1-1/04	-0.147	0.000	0.52			31.8	OK	
1.004	S1-1/05	-0.174	0.000	0.37			35.8	OK	
1.005	S1-1/06	-0.161	0.000	0.44		8	33.8	OK	
1.006	S1-1/07	-0.168	0.000	0.40			37.9	OK	
1.007	S1-1/08	-0.134	0.000	0.58			39.8	OK	
1.008	S1-1/09	-0.166	0.000	0.41			42.9	OK	
2.000	S1-2/01	-0.255	0.000	0.05			4.5	OK	
3.000	S1-3/01	-0.275	0.000	0.02			2.9	OK	
2.001	S1-2/02	-0.228	0.000	0.13		8	12.4	OK	
4.000	S1-4/01	-0.287	0.000	0.01			1.6	OK	
2.002	S1-2/03	-0.226	0.000	0.14		7	14.0	OK	
2.003	S1-2/04	-0.197	0.000	0.26			18.9	OK	
2.004	S1-2/05	-0.186	0.000	0.31			23.0	OK	
1.009	S1-1/10	-0.165	0.000	0.59		6	71.2	OK	

McAdam Design		Page 10
1C Montgomery House	Dublin Street North	
Castlereagh Business Park	Storm Water Flow	
478 Castlereagh Rd, Belfast,	Unrestricted	Mirro
Date 03/02/2025	Designed by PMcM	Desinado
File 2025-01-31 Dublin Stree	Checked by PA	Diamage
Innovyze	Network 2020.1.3	

$\frac{1 \text{ year Return Period Summary of Critical Results by Maximum Level (Rank 1)}}{\text{for Storm}}$

PN	US/MH Name	Storm		Climate Change	First (X) Surcharge	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m)
1.010	S1-1/11	30 Winter	1	+10%					58.231
1.011	S1-1/12	30 Winter	1	+10%					56.568
1.012	S1-1/13	30 Winter	1	+10%	100/15 Summer				55.645
1.013	S1-1/14	30 Winter	1	+10%					55.419

		Surcharged	Flooded			Half Drain	Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Time	Flow	Level	
PN	Name	(m)	(m³)	Cap.	(1/s)	(mins)	(1/s)	Status Exceeded	
1.010	S1-1/11	-0.263	0.000	0.19		13	74.9	OK	
1.011	S1-1/12	-0.255	0.000	0.22			76.5	OK	
1.012	S1-1/13	-0.265	0.000	0.35			79.1	OK	
1.013	S1-1/14	-0.332	0.000	0.15			79.3	OK	

McAdam Design		Page 11
1C Montgomery House	Dublin Street North	
Castlereagh Business Park	Storm Water Flow	
478 Castlereagh Rd, Belfast,	Unrestricted	Mirro
Date 03/02/2025	Designed by PMcM	Desinado
File 2025-01-31 Dublin Stree	Checked by PA	Dialilade
Innovyze	Network 2020.1.3	

30 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 8 Number of Online Controls 0 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR Ratio R 0.331
Region Scotland and Ireland Cv (Summer) 0.750
M5-60 (mm) 18.200 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 300.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

DVD Status

ON

Inertia Status

Profile(s)

Duration(s) (mins)

15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080

Return Period(s) (years)

Climate Change (%)

Summer and Winter

15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 8640, 10080

1, 30, 100

10, 10, 10

	PN	US/MH Name	Storm		Climate Change		t (X) narge	First (Y)	First (Z)	Overflow Act.	Water Level (m)
	-11	Hame	DCOIM	rerrou	Cilarige	bulci	iarge	11000	Overrion	ncc.	(111)
	1.000	S1-1/01	15 Winter	30	+10%						60.740
	1.001	S1-1/02	15 Winter	30	+10%	100/15	Summer				60.405
	1.002	S1-1/03	15 Winter	30	+10%	30/15	Winter				60.364
	1.003	S1-1/04	15 Winter	30	+10%	30/15	Summer				60.238
	1.004	S1-1/05	15 Winter	30	+10%	100/15	Summer				60.090
	1.005	S1-1/06	15 Winter	30	+10%	30/15	Winter				59.959
	1.006	S1-1/07	15 Winter	30	+10%	30/15	Winter				59.865
	1.007	S1-1/08	15 Winter	30	+10%	30/15	Summer				59.736
	1.008	S1-1/09	15 Winter	30	+10%						59.508
	2.000	S1-2/01	15 Winter	30	+10%						59.169
	3.000	S1-3/01	15 Winter	30	+10%						60.769
	2.001	S1-2/02	15 Winter	30	+10%						59.104
	4.000	S1-4/01	15 Winter	30	+10%						60.870
	2.002	S1-2/03	15 Winter	30	+10%	100/15	Summer				58.929
	2.003	S1-2/04	15 Winter	30	+10%	30/15	Summer				58.890
	2.004	S1-2/05	15 Winter	30	+10%	30/15	Summer				58.797
	1.009	S1-1/10	15 Winter	30	+10%	30/15	Summer				58.691
İ					©1982	-2020	Innovy	ze			

McAdam Design		Page 12
1C Montgomery House	Dublin Street North	
Castlereagh Business Park	Storm Water Flow	
478 Castlereagh Rd, Belfast,	Unrestricted	Mirro
Date 03/02/2025	Designed by PMcM	Drainage
File 2025-01-31 Dublin Stree	Checked by PA	Diamage
Innovyze	Network 2020.1.3	

PN	US/MH Name	Surcharged Depth (m)		Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (1/s)	Status	Level Exceeded
1.000	S1-1/01	-0.226	0.000	0.14		6	23.3	OK	
1.001	S1-1/02	-0.097	0.000	0.47		4	44.1	OK	
1.002	S1-1/03	0.010	0.000	0.74		4	68.4	SURCHARGED	
1.003	S1-1/04	0.022	0.000	1.25			76.7	SURCHARGED	
1.004	S1-1/05	-0.066	0.000	0.89			86.7	OK	
1.005	S1-1/06	0.009	0.000	0.94		6	72.4	SURCHARGED	
1.006	S1-1/07	0.009	0.000	0.86			81.2	SURCHARGED	
1.007	S1-1/08	0.049	0.000	1.25			85.6	SURCHARGED	
1.008	S1-1/09	-0.078	0.000	0.89			93.3	OK	
2.000	S1-2/01	-0.231	0.000	0.12			10.0	OK	
3.000	S1-3/01	-0.262	0.000	0.04			6.5	OK	
2.001	S1-2/02	-0.184	0.000	0.31		5	30.5	OK	
4.000	S1-4/01	-0.270	0.000	0.02			3.5	OK	
2.002	S1-2/03	-0.149	0.000	0.35		3	35.4	OK	
2.003	S1-2/04	0.124	0.000	0.57			42.1	SURCHARGED	
2.004	S1-2/05	0.118	0.000	0.68			50.8	SURCHARGED	
1.009	S1-1/10	0.102	0.000	1.45		7	173.8	SURCHARGED	

McAdam Design		Page 13		
1C Montgomery House	Dublin Street North			
Castlereagh Business Park	Storm Water Flow			
478 Castlereagh Rd, Belfast,	Unrestricted	Mirro		
Date 03/02/2025	Designed by PMcM	Desinado		
File 2025-01-31 Dublin Stree	Checked by PA	Dialilade		
Innovyze	Network 2020.1.3			

									Water
	US/MH		Return	${\tt Climate}$	First (X)	First (Y)	First (Z)	Overflow	Level
PN	Name	Storm	Period	Change	Surcharge	Flood	Overflow	Act.	(m)
1.010	S1-1/11	15 Winter	30	+10%					58.303
1.011	S1-1/12	15 Winter	30	+10%					56.649
1.012	S1-1/13	15 Winter	30	+10%	100/15 Summer				55.788
1.013	S1-1/14	15 Winter	30	+10%					55.494

		Surcharged	Flooded			Half Drain	Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Time	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded
1.010	S1-1/11	-0.191	0.000	0.48		9	185.8	OK	
1.011	S1-1/12	-0.174	0.000	0.56			189.8	OK	
1.012	S1-1/13	-0.121	0.000	0.87			195.5	OK	
1.013	S1-1/14	-0.258	0.000	0.38			195.3	OK	

McAdam Design	Page 14	
1C Montgomery House	Dublin Street North	
Castlereagh Business Park	Storm Water Flow	
478 Castlereagh Rd, Belfast,	Unrestricted	Mirro
Date 03/02/2025	Designed by PMcM	Desinado
File 2025-01-31 Dublin Stree	Checked by PA	Diamage
Innovyze	Network 2020.1.3	

100 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 8 Number of Online Controls 0 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR Ratio R 0.331
Region Scotland and Ireland Cv (Summer) 0.750
M5-60 (mm) 18.200 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 300.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

DVD Status

ON

Inertia Status

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600,
720, 960, 1440, 2160, 2880, 4320, 5760,
7200, 8640, 10080
Return Period(s) (years) 1, 30, 100
Climate Change (%) 10, 10, 10

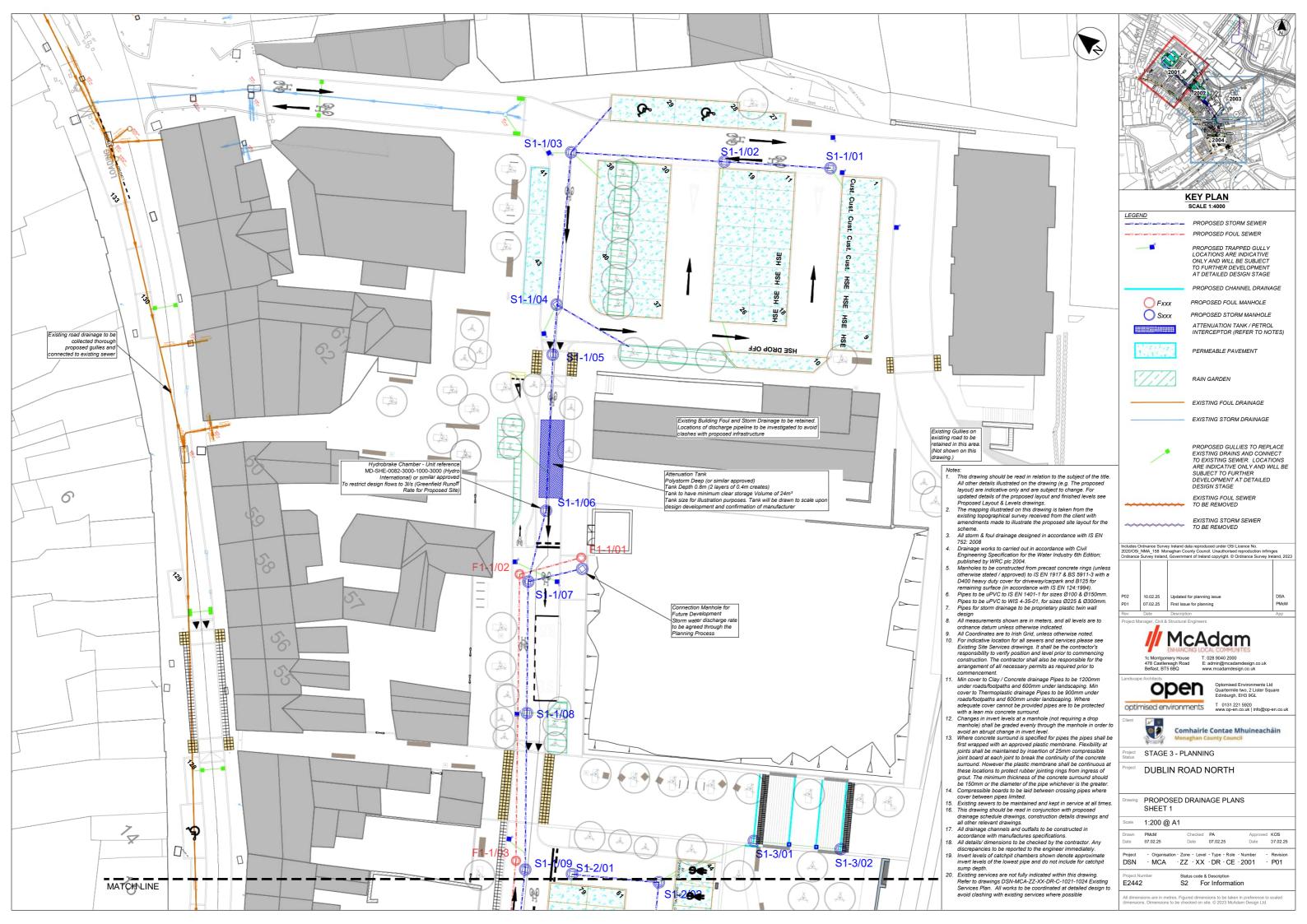
	PN	US/MH Name	Storm		Climate Change	_	t (X) harge	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m)
	1.000	S1-1/01	15 Winter	100	+10%						60.752
	1.001	S1-1/02	15 Winter	100	+10%	100/15	Summer				60.560
	1.002	S1-1/03	15 Winter	100	+10%	30/15	Winter				60.450
	1.003	S1-1/04	15 Winter	100	+10%	30/15	Summer				60.350
	1.004	S1-1/05	15 Winter	100	+10%	100/15	Summer				60.241
	1.005	S1-1/06	15 Winter	100	+10%	30/15	Winter				60.069
	1.006	S1-1/07	15 Winter	100	+10%	30/15	Winter				59.959
	1.007	S1-1/08	15 Winter	100	+10%	30/15	Summer				59.788
	1.008	S1-1/09	15 Winter	100	+10%						59.568
	2.000	S1-2/01	15 Winter	100	+10%						59.192
	3.000	S1-3/01	15 Winter	100	+10%						60.774
	2.001	S1-2/02	15 Winter	100	+10%						59.174
	4.000	S1-4/01	15 Winter	100	+10%						60.873
	2.002	S1-2/03	15 Winter	100	+10%	100/15	Summer				59.129
	2.003	S1-2/04	15 Winter	100	+10%	30/15	Summer				58.998
	2.004	S1-2/05	15 Winter	100	+10%	30/15	Summer				58.898
	1.009	S1-1/10	15 Winter	100	+10%	30/15	Summer				58.792
İ					©1982	-2020	Innovy	ze			

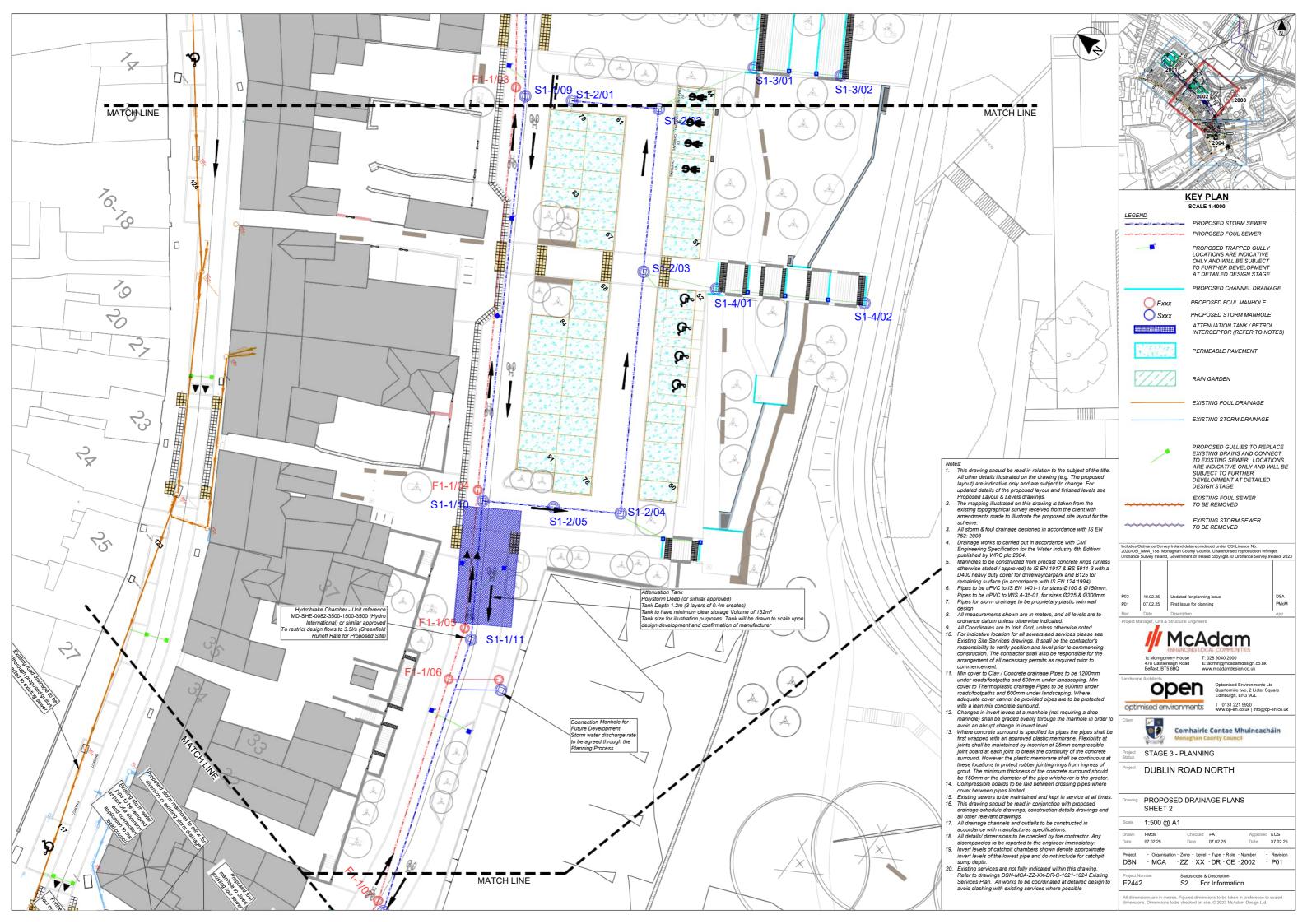
McAdam Design								
1C Montgomery House	Dublin Street North							
Castlereagh Business Park	Storm Water Flow							
478 Castlereagh Rd, Belfast,	Unrestricted	Mirro						
Date 03/02/2025	Designed by PMcM	Desinado						
File 2025-01-31 Dublin Stree	Checked by PA	Dialilade						
Innovyze	Network 2020.1.3	'						

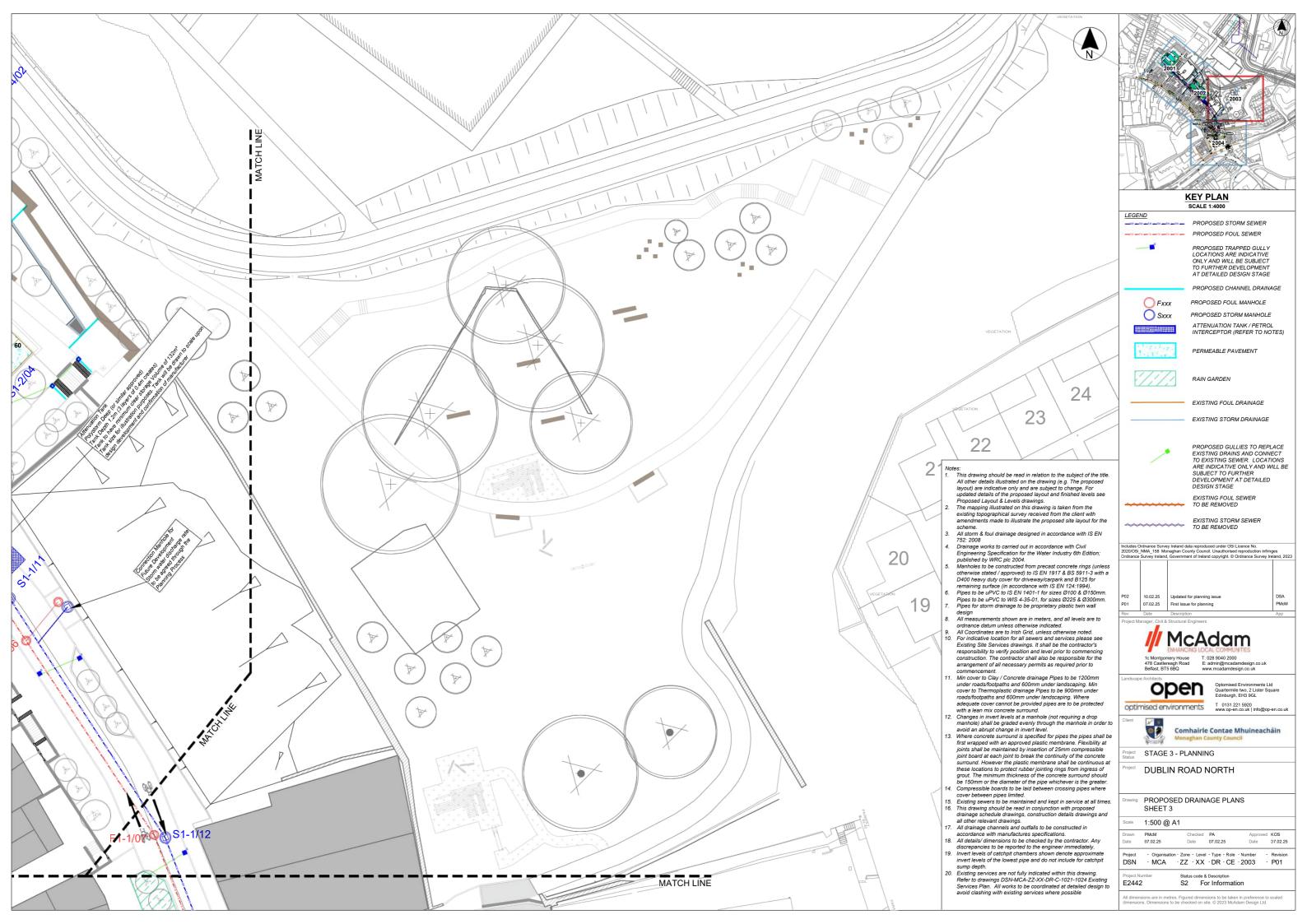
$\frac{100 \text{ year Return Period Summary of Critical Results by Maximum Level (Rank}}{1) \text{ for Storm}}$

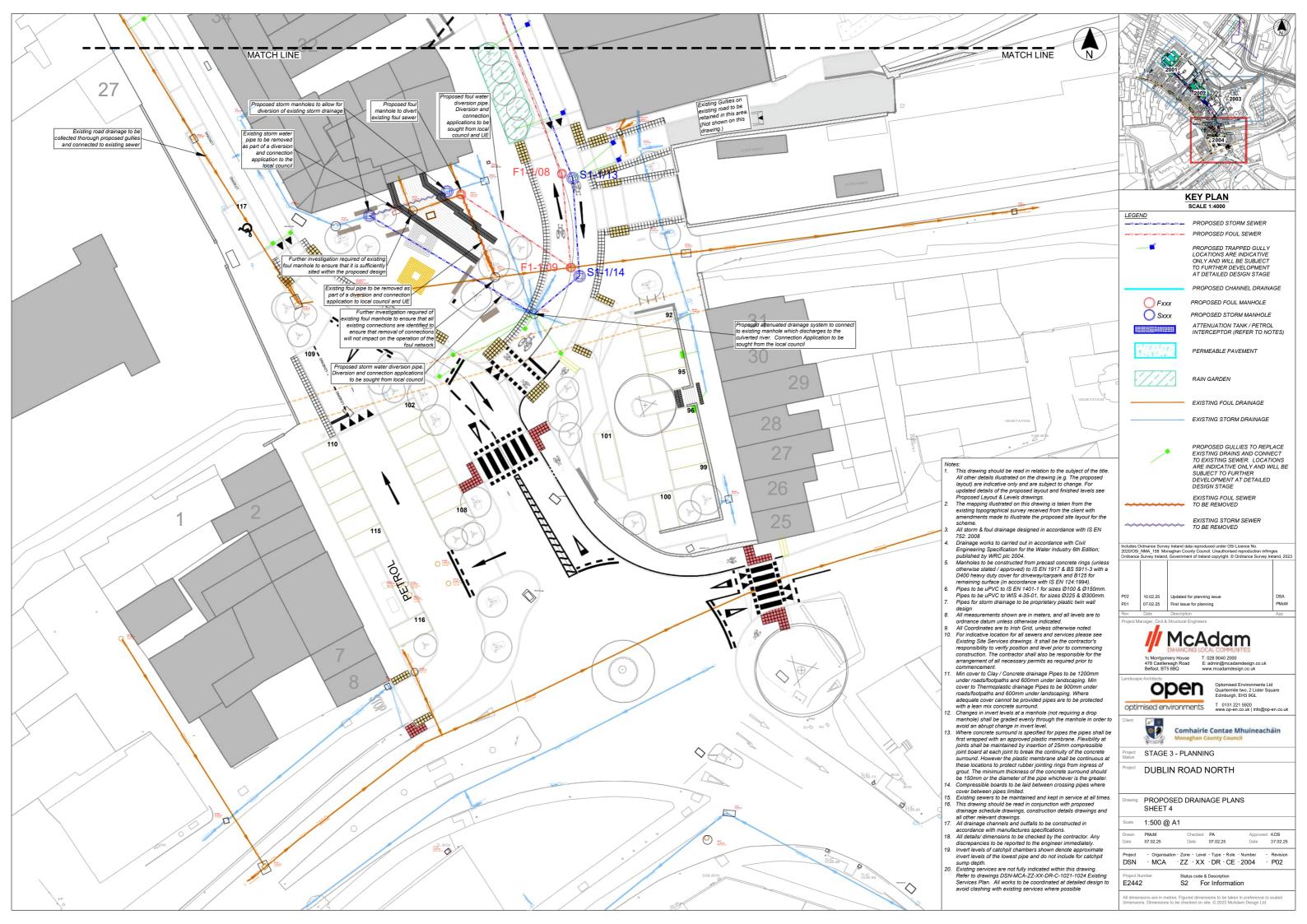
US/MH PN Name	Surcharged Depth (m)		Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (1/s)	Status	Level Exceeded
1.000 S1-1/01	-0.214	0.000	0.18		6	30.3	OK	
1.001 S1-1/02	0.058	0.000	0.60		3	55.5	SURCHARGED	
1.002 S1-1/03	0.096	0.000	0.87		5	80.3	SURCHARGED	
1.003 S1-1/04	0.134	0.000	1.45			89.2	SURCHARGED	
1.004 S1-1/05	0.085	0.000	1.04			101.0	SURCHARGED	
1.005 S1-1/06	0.119	0.000	1.11		8	85.2	SURCHARGED	
1.006 S1-1/07	0.103	0.000	0.99			93.8	SURCHARGED	
1.007 S1-1/08	0.101	0.000	1.44			98.6	SURCHARGED	
1.008 S1-1/09	-0.018	0.000	1.00			105.0	OK	
2.000 S1-2/01	-0.208	0.000	0.16			13.0	OK	
3.000 S1-3/01	-0.257	0.000	0.05			8.4	OK	
2.001 S1-2/02	-0.114	0.000	0.41		3	39.7	OK	
4.000 S1-4/01	-0.267	0.000	0.03			4.6	OK	
2.002 S1-2/03	0.051	0.000	0.39		4	39.8	SURCHARGED	
2.003 S1-2/04	0.232	0.000	0.71			52.5	SURCHARGED	
2.004 S1-2/05	0.219	0.000	0.86			64.4	SURCHARGED	
1.009 S1-1/10	0.203	0.000	1.80		9	215.4	SURCHARGED	

McAdam Design	Page 16	
1C Montgomery House	Dublin Street North	
Castlereagh Business Park	Storm Water Flow	
478 Castlereagh Rd, Belfast,	Unrestricted	Mirro
Date 03/02/2025	Designed by PMcM	Desinado
File 2025-01-31 Dublin Stree	Checked by PA	Dialilade
Innovyze	Network 2020.1.3	


$\frac{100 \text{ year Return Period Summary of Critical Results by Maximum Level (Rank}}{1) \text{ for Storm}}$


									Water
	US/MH		Return	Climate	First (X)	First (Y)	First (Z)	Overflow	Level
PN	Name	Storm	Period	Change	Surcharge	Flood	Overflow	Act.	(m)
1.010	S1-1/11	15 Winter	100	+10%					58.331
1.011	S1-1/12	15 Winter	100	+10%					56.682
1.012	S1-1/13	15 Winter	100	+10%	100/15 Summer				55.932
1.013	S1-1/14	15 Winter	100	+10%					55.525


		Surcharged	${\tt Flooded}$			Half Drain	Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Time	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded
1.010	S1-1/11	-0.163	0.000	0.61		11	235.5	OK	
1.011	S1-1/12	-0.140	0.000	0.71			240.8	OK	
1.012	S1-1/13	0.022	0.000	1.11			248.2	SURCHARGED	
1.013	S1-1/14	-0.226	0.000	0.49			250.6	OK	



Appendix D – Proposed Drainage Layout

Appendix E – Proposed Storm Design - Restricted Runoff Calculations

McAdam Design	Page 1	
1C Montgomery House	Dublin Street North	
Castlereagh Business Park	Storm Water Flow	
478 Castlereagh Rd, Belfast,	Attenuated	Mirro
Date 31/01/2025	Designed by PMcM	Drainage
File 2025-01-31 Dublin Stree	Checked by PA	Dialilade
Innovyze	Network 2018.1.1	•

STORM SEWER DESIGN by the Modified Rational Method

Design Criteria for Storm

Pipe Sizes STANDARD Manhole Sizes STANDARD

FSR Rainfall Model - Scotland and Ireland

Return Period (years) 2 PIMP (%) 100

M5-60 (mm) 18.200 Add Flow / Climate Change (%) 0

Ratio R 0.331 Minimum Backdrop Height (m) 0.200

Maximum Rainfall (mm/hr) 50 Maximum Backdrop Height (m) 1.500

Maximum Time of Concentration (mins) 30 Min Design Depth for Optimisation (m) 1.200

Foul Sewage (l/s/ha) 0.000 Min Vel for Auto Design only (m/s) 1.00

Volumetric Runoff Coeff. 0.750 Min Slope for Optimisation (1:X) 500

Designed with Level Soffits

Time Area Diagram for Storm

Time	Area	Time	Area
(mins)	(ha)	(mins)	(ha)
0-4	0.566	4-8	0.294

Total Area Contributing (ha) = 0.860

Total Pipe Volume $(m^3) = 31.037$

Network Design Table for Storm

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	ase (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
1.000	13.800	0.460	30.0	0.072	5.00	0.0	0.600	0	300	Pipe/Conduit	ð
1.001	14.800	0.148	100.0	0.068	0.00	0.0	0.600	0	300	Pipe/Conduit	
1.002	13.800	0.138	100.0	0.080	0.00	0.0	0.600	0	300	Pipe/Conduit	ď
1.003	6.000	0.060	100.0	0.025	0.00	0.0	0.600	0	300	Pipe/Conduit	ď
1.004	20.571	0.206	99.9	0.034	0.00	0.0	0.600	0	300	Pipe/Conduit	ď
1.005	9.417	0.094	100.2	0.015	0.00	0.0	0.600	0	300	Pipe/Conduit	ď
1.006	16.932	0.169	100.2	0.043	0.00	0.0	0.600	0	300	Pipe/Conduit	ď

Network Results Table

PN	Rain	T.C.	US/IL	Σ I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow	
	(mm/hr)	(mins)	(m)	(ha)	Flow (1/s)	(1/s)	(1/s)	(m/s)	(1/s)	(1/s)	
1.000	50.00	5.08	60.666	0.072	0.0	0.0	0.0	2.88	203.7	9.7	
1.001	50.00	5.24	60.202	0.140	0.0	0.0	0.0	1.57	111.1	19.0	
1.002	50.00	5.38	60.054	0.220	0.0	0.0	0.0	1.57	111.1	29.8	
1.003	50.00	5.45	59.916	0.245	0.0	0.0	0.0	1.57	111.1	33.2	
1.004	50.00	5.66	59.856	0.279	0.0	0.0	0.0	1.57	111.2	37.8	
1.005	50.00	5.76	59.650	0.294	0.0	0.0	0.0	1.57	111.0	39.8	
1.006	50.00	5.94	59.556	0.337	0.0	0.0	0.0	1.57	111.0	45.6	

McAdam Design	Page 2	
1C Montgomery House	Dublin Street North	
Castlereagh Business Park	Storm Water Flow	
478 Castlereagh Rd, Belfast,	Attenuated	Micro
Date 31/01/2025	Designed by PMcM	Drainage
File 2025-01-31 Dublin Stree	Checked by PA	Diamage
Innovyze	Network 2018.1.1	

Network Design Table for Storm

PN	Length (m)	Fall	Slope (1:X)	I.Area (ha)	T.E.	se (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
1.007 1.008	20.134 52.378			0.024 0.035	0.00		0.600	0		Pipe/Conduit Pipe/Conduit	•
2.000	11.200	0.112	100.0	0.031	5.00	0.0	0.600	0	300	Pipe/Conduit	0
3.000	13.300	0.443	30.0	0.020	5.00	0.0	0.600	0	300	Pipe/Conduit	0
2.001	21.000	0.210	100.0	0.041	0.00	0.0	0.600	0	300	Pipe/Conduit	•
4.000	9.600	0.480	20.0	0.011	5.00	0.0	0.600	0	300	Pipe/Conduit	ð
2.002 2.003 2.004	31.200 8.700 9.000	0.087		0.008 0.040 0.035	0.00 0.00 0.00	0.0	0.600 0.600 0.600	0 0	300	Pipe/Conduit Pipe/Conduit Pipe/Conduit	5
1.009 1.010 1.011 1.012 1.013	17.900 36.768 23.200 12.619 7.642	1.671 0.913 0.158	188.4 22.0 25.4 79.9 9.2	0.128 0.092 0.023 0.035 0.000	0.00 0.00 0.00 0.00	0.0 0.0 0.0	0.600 0.600 0.600 0.600	0 0 0	375 375 450	Pipe/Conduit Pipe/Conduit Pipe/Conduit Pipe/Conduit Pipe/Conduit	9999

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (1/s)	Foul (1/s)	Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)
1.007	50.00		59.387 59.286	0.361	0.0	0.0	0.0	1.11 1.57	78.5 111.2	48.9 53.6
2.000	50.00		59.100	0.031	0.0	0.0	0.0	1.57	111.1	4.2
3.000	50.00		60.731	0.020	0.0	0.0	0.0	2.88	203.7	2.7
2.001	50.00		58.988	0.092	0.0	0.0	0.0	1.57	111.1	12.5
4.000	50.00		60.840	0.011	0.0	0.0	0.0	3.53	249.6	1.5
2.002	50.00		58.778 58.466	0.111	0.0	0.0	0.0	1.57 1.57	111.1 111.1	15.0 20.4
2.004	50.00	5.86	58.379	0.186	0.0	0.0	0.0	1.57	111.1	25.2
1.009	50.00		58.214 58.119	0.710	0.0	0.0	0.0	1.32	145.4 428.3	96.1 108.6
1.010	50.00		56.448	0.802 0.825	0.0	0.0	0.0	3.61		111.7
1.012	50.00		55.460 55.302	0.860 0.860	0.0	0.0	0.0	2.28 6.73	362.1 1070.8	
1.013	50.00	7.40	JJ.302	0.000	0.0	0.0	0.0	0.73	10/0.0	110.0

McAdam Design		Page 3
1C Montgomery House	Dublin Street North	
Castlereagh Business Park	Storm Water Flow	
478 Castlereagh Rd, Belfast,	Attenuated	Mirro
Date 31/01/2025	Designed by PMcM	Designado
File 2025-01-31 Dublin Stree	Checked by PA	Dialilade
Innovyze	Network 2018.1.1	

Manhole Schedules for Storm

MH Name	MH CL (m)	MH Depth (m)	Con	MH nection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diame (mr		Backdrop (mm)
S1-1/01	61.866	1.200	Open	Manhole	1200	1.000	60.666	300					
S1-1/02	61.402	1.200	Open	Manhole	1200	1.001	60.202	300	1.000	60.206		300	4
S1-1/03	61.296	1.242	Open	Manhole	1200	1.002	60.054	300	1.001	60.054		300	
S1-1/04	61.266	1.350	Open	Manhole	1200	1.003	59.916	300	1.002	59.916		300	
S1-1/05	61.349	1.493	Open	Manhole	1200	1.004	59.856	300	1.003	59.856		300	
S1-1/06	61.083	1.433	Open	Manhole	1200	1.005	59.650	300	1.004	59.650		300	
S1-1/07	60.999	1.443	Open	Manhole	1200	1.006	59.556	300	1.005	59.556		300	
S1-1/08	60.870	1.483	Open	Manhole	1200	1.007	59.387	300	1.006	59.387		300	
S1-1/09	61.184	1.898	Open	Manhole	1200	1.008	59.286	300	1.007	59.286		300	
S1-2/01	61.100	2.000	Open	Manhole	1200	2.000	59.100	300					
S1-3/01	61.931	1.200	Open	Manhole	1200	3.000	60.731	300					
S1-2/02	61.500	2.512	Open	Manhole	1200	2.001	58.988	300	2.000	58.988		300	
									3.000	60.288		300	1300
S1-4/01	62.040	1.200	Open	Manhole	1200	4.000	60.840	300					
S1-2/03	61.700	2.922	Open	Manhole	1200	2.002	58.778	300	2.001	58.778		300	
									4.000	60.360		300	1582
S1-2/04	62.072	3.606	Open	Manhole	1200	2.003	58.466	300	2.002	58.466		300	
S1-2/05	61.826	3.447	Open	Manhole	1200	2.004	58.379	300	2.003	58.379		300	
S1-1/10	61.489	3.275	Open	Manhole	1350	1.009	58.214	375	1.008	58.762		300	473
									2.004	58.289		300	
			1 -	Manhole		1.010	58.119		1.009	58.119		375	
			1 -	Manhole		1.011	56.448		1.010	56.448		375	
S1-1/13				Manhole		1.012	55.460		1.011	55.535		375	
S1-1/14			1 -	Manhole		1.013	55.302	450	1.012	55.302		450	
	57.931	3.460	Open	Manhole	300		OUTFALL		1.013	54.471		450	

McAdam Design		Page 4
1C Montgomery House	Dublin Street North	
Castlereagh Business Park	Storm Water Flow	
478 Castlereagh Rd, Belfast,	Attenuated	Mirro
Date 31/01/2025	Designed by PMcM	Drainage
File 2025-01-31 Dublin Stree	Checked by PA	Drainage
Innovyze	Network 2018.1.1	

PIPELINE SCHEDULES for Storm

<u>Upstream Manhole</u>

PN	Hyd	Diam	MH	C.Level	I.Level	D.Depth	MH	MH DIAM., L*W
	Sect	(mm)	Name	(m)	(m)	(m)	Connection	(mm)
1.000	0	300	S1-1/01	61.866	60.666	0 900	Open Manhole	1200
1.001	0		S1-1/02		60.202		Open Manhole	
							-	
1.002	0		S1-1/03		60.054		Open Manhole	
1.003	0	300	S1-1/04	61.266	59.916	1.050	Open Manhole	1200
1.004	0	300	S1-1/05	61.349	59.856	1.193	Open Manhole	1200
1.005	0	300	S1-1/06	61.083	59.650	1.133	Open Manhole	1200
1.006	0	300	S1-1/07	60.999	59.556		Open Manhole	
1.007	0	300	S1-1/08	60.870	59.387		Open Manhole	
1.008	0		S1-1/09		59.286		Open Manhole	
1.000	Ü		01 1,00	01.101	03.200	1.030	opon namoro	1200
2.000	0	300	S1-2/01	61.100	59.100	1.700	Open Manhole	1200
3.000	0	300	S1-3/01	61.931	60.731	0.900	Open Manhole	1200
2.001	0	300	S1-2/02	61.500	58.988	2.212	Open Manhole	1200
4.000	0	300	S1-4/01	62.040	60.840	0.900	Open Manhole	1200
2.002	0	300	S1-2/03	61.700	58.778	2.622	Open Manhole	1200
2.002			S1-2/04				-	
	0						Open Manhole	
2.004	0	300	S1-2/05	61.826	58.379	3.147	Open Manhole	1200

<u>Downstream Manhole</u>

PN	Length	Slope	MH	C.Level	I.Level	D.Depth	MH	MH DIAM., L*W
	(m)	(1:X)	Name	(m)	(m)	(m)	Connection	(mm)
1 000	13 800	30 0	S1-1/02	61.402	60.206	0 896	Open Manhole	1200
			S1-1/03				Open Manhole	
			S1-1/04				Open Manhole	
			S1-1/04 S1-1/05	61.349			-	
							Open Manhole	
			S1-1/06	61.083			Open Manhole	
			S1-1/07				Open Manhole	
1.006	16.932	100.2	S1-1/08	60.870	59.387	1.183	Open Manhole	1200
1.007	20.134	199.3	S1-1/09	61.184	59.286	1.598	Open Manhole	1200
1.008	52.378	100.0	S1-1/10	61.489	58.762	2.427	Open Manhole	1350
2.000	11.200	100.0	S1-2/02	61.500	58.988	2.212	Open Manhole	1200
							-	
3.000	13.300	30.0	S1-2/02	61.500	60.288	0.912	Open Manhole	1200
			,				-F	
2 001	21 000	100 0	91-2/03	61.700	58.778	2 622	Open Manhole	1200
2.001	21.000	100.0	D1 2/03	01.700	30.770	2.022	open namore	1200
4 000	0 600	20 0	01 0/00	61.700	60.360	1 040	Oman Manhala	1200
4.000	9.000	20.0	51-2/03	61.700	60.360	1.040	Open Manhole	1200
0 000	21 000	100 0	01 0/04	60 070	FO 466	2 206	0 11 1	1000
			S1-2/04				Open Manhole	
			S1-2/05				Open Manhole	
2.004	9.000	100.0	S1-1/10	61.489	58.289	2.900	Open Manhole	1350
				©1982-	2018 In	novvze		

McAdam Design	Page 5	
1C Montgomery House	Dublin Street North	
Castlereagh Business Park	Storm Water Flow	
478 Castlereagh Rd, Belfast,	Attenuated	Micco
Date 31/01/2025	Designed by PMcM	Desinado
File 2025-01-31 Dublin Stree	Checked by PA	Diamage
Innovyze	Network 2018.1.1	

PIPELINE SCHEDULES for Storm

<u>Upstream Manhole</u>

PN	Hyd	${\tt Diam}$	MH	C.Level	I.Level	D.Depth	MH	MH DIAM., L*W
	Sect	(mm)	Name	(m)	(m)	(m)	Connection	(mm)
1.009	0	375	S1-1/10	61.489	58.214	2.900	Open Manhole	1350
1.010	0	375	S1-1/11	60.593	58.119	2.099	Open Manhole	1350
1.011	0	375	S1-1/12	58.739	56.448	1.916	Open Manhole	1350
1.012	0	450	S1-1/13	57.816	55.460	1.906	Open Manhole	1350
1.013	0	450	S1-1/14	57.931	55.302	2.179	Open Manhole	1350

<u>Downstream Manhole</u>

PN	Length	Slope	MH	C.Level	I.Level	D.Depth	MH	MH DIAM., L*W
	(m)	(1:X)	Name	(m)	(m)	(m)	Connection	(mm)
1.009	17.900	188.4	S1-1/11	60.593	58.119	2.099	Open Manhole	1350
1.010	36.768	22.0	S1-1/12	58.739	56.448	1.916	Open Manhole	1350
1.011	23.200	25.4	S1-1/13	57.816	55.535	1.906	Open Manhole	1350
1.012	12.619	79.9	S1-1/14	57.931	55.302	2.179	Open Manhole	1350
1.013	7.642	9.2		57.931	54.471	3.010	Open Manhole	300

Free Flowing Outfall Details for Storm

Outfall	Outfall	c.	Level	I.	Level		Min	D,L	W
Pipe Number	Name		(m)		(m)	I.	Level	(mm)	(mm)

1.013 57.931 54.471 0.000 300 0

Simulation Criteria for Storm

Volumetric Runoff Coeff	0.750	Additional Flow - % of Total Flow 0.000
Areal Reduction Factor	1.000	MADD Factor * 10m3/ha Storage 2.000
Hot Start (mins)	0	Inlet Coefficient 0.800
Hot Start Level (mm)	0	Flow per Person per Day (1/per/day) 0.000
Manhole Headloss Coeff (Global)	0.500	Run Time (mins) 60
Foul Sewage per hectare (1/s)	0.000	Output Interval (mins) 1

Number of Input Hydrographs 0 Number of Storage Structures 8 Number of Online Controls 3 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

	Rainfal	.l Model			FSR		Rat	tio R	0.331
Return	Period	(years)			2	Prof	ile	Type	Summer
		Region	Scotland	and	Ireland	Cv	(Sur	nmer)	0.750
	M5-	-60 (mm)			18.200	Cv	(Wir	nter)	0.840

McAdam Design		Page 6
1C Montgomery House	Dublin Street North	
Castlereagh Business Park	Storm Water Flow	
478 Castlereagh Rd, Belfast,	Attenuated	Micro
Date 31/01/2025	Designed by PMcM	Drainage
File 2025-01-31 Dublin Stree	Checked by PA	Diamage
Innovvze	Network 2018.1.1	

Synthetic Rainfall Details

Storm Duration (mins) 30

McAdam Design		Page 7
1C Montgomery House	Dublin Street North	
Castlereagh Business Park	Storm Water Flow	
478 Castlereagh Rd, Belfast,	Attenuated	Mirro
Date 31/01/2025	Designed by PMcM	Drainage
File 2025-01-31 Dublin Stree	Checked by PA	Drainage
Innovyze	Network 2018.1.1	

Online Controls for Storm

Hydro-Brake® Optimum Manhole: S1-1/06, DS/PN: 1.005, Volume (m³): 3.0

Unit Reference MD-SHE-0082-3000-1000-3000 Design Head (m) 1 000 Design Flow (1/s) 3.0 Flush-Flo™ Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 82 Invert Level (m) 59.650 Minimum Outlet Pipe Diameter (mm) 100 1200 Suggested Manhole Diameter (mm)

 Control
 Points
 Head (m)
 Flow (1/s)

 Design Point (Calculated)
 1.000
 3.0

 Flush-Flo™
 0.297
 3.0

 Kick-Flo®
 0.623
 2.4

 Mean Flow over Head Range
 2.6

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m) H	Flow (1/s)	Depth (m) Fl	ow (1/s)	Depth (m) Flow	(1/s)	Depth (m)	Flow (1/s)
0.100	2.4	1.200	3.3	3.000	5.0	7.000	7.4
0.200	2.9	1.400	3.5	3.500	5.4	7.500	7.7
0.300	3.0	1.600	3.7	4.000	5.7	8.000	7.9
0.400	2.9	1.800	3.9	4.500	6.0	8.500	8.2
0.500	2.8	2.000	4.1	5.000	6.3	9.000	8.4
0.600	2.5	2.200	4.3	5.500	6.6	9.500	8.6
0.800	2.7	2.400	4.5	6.000	6.9		
1.000	3.0	2.600	4.7	6.500	7.2		

Hydro-Brake® Optimum Manhole: S1-1/11, DS/PN: 1.010, Volume (m3): 5.4

Unit Reference MD-SHE-0082-3500-1500-3500 Design Head (m) 1.500 Design Flow (1/s) 3.5 Flush-Flo™ Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 82 Invert Level (m) 58.119 100 Minimum Outlet Pipe Diameter (mm) Suggested Manhole Diameter (mm) 1200

McAdam Design		Page 8
1C Montgomery House	Dublin Street North	
Castlereagh Business Park	Storm Water Flow	
478 Castlereagh Rd, Belfast,	Attenuated	Mirro
Date 31/01/2025	Designed by PMcM	Designado
File 2025-01-31 Dublin Stree	Checked by PA	Diamage
Innovyze	Network 2018.1.1	'

Hydro-Brake® Optimum Manhole: S1-1/11, DS/PN: 1.010, Volume (m3): 5.4

Control	Points	Head (m)	Flow (1/s)
Design Point	(Calculated)	1.500	3.5
	Flush-Flo™	0.359	3.1
	Kick-Flo®	0.730	2.5
Mean Flow ove	r Head Range	_	2.9

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow (1/s)	Depth (m) Flo	ow (1/s)	Depth (m) Flow	(1/s)	Depth (m)	Flow (1/s)
0.100	2.4	1.200	3.2	3.000	4.8	7.000	7.2
0.200	2.9	1.400	3.4	3.500	5.2	7.500	7.4
0.300	3.1	1.600	3.6	4.000	5.5	8.000	7.7
0.400	3.1	1.800	3.8	4.500	5.8	8.500	7.9
0.500	3.1	2.000	4.0	5.000	6.1	9.000	8.1
0.600	2.9	2.200	4.2	5.500	6.4	9.500	8.3
0.800	2.6	2.400	4.3	6.000	6.7		
1.000	2.9	2.600	4.5	6.500	6.9		

Hydro-Brake® Optimum Manhole: S1-1/13, DS/PN: 1.012, Volume (m3): 5.8

Unit Reference MD-SHE-0103-6000-1800-6000 Design Head (m) 1.800 Design Flow (1/s) 6.0 Flush-Flo™ Calculated Objective Minimise upstream storage Application Surface Sump Available Yes 103 Diameter (mm) Invert Level (m) 55.460 Minimum Outlet Pipe Diameter (mm) 150 1200 Suggested Manhole Diameter (mm)

Control Points Head (m) Flow (1/s)

Design	n Poi	int (Calcul	Lated)	1.800	6.0
			Flush	n-Flo™	0.453	5.5
			Kic	c-Flo®	0.920	4.4
Mean 1	Flow	over	Head	Range	-	5.0

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m) Flow	(1/s) Dept	h (m)	Flow (1/s)	Depth (m) Flo	w (1/s)	Depth (m)	Flow (1/s)
0.100	3.5	0.300	5.3	0.500	5.5	0.800	5.0
0.200	4.9		5.5	0.600	5.4	1.000	4.6

McAdam Design				
1C Montgomery House	Dublin Street North			
Castlereagh Business Park	Storm Water Flow			
478 Castlereagh Rd, Belfast,	Attenuated	Micro		
Date 31/01/2025	Designed by PMcM	Drainage		
File 2025-01-31 Dublin Stree	Checked by PA	Drainage		
Innovyze	Network 2018.1.1			

Hydro-Brake® Optimum Manhole: S1-1/13, DS/PN: 1.012, Volume (m³): 5.8

Depth (m)	Flow (1/s)	Depth (m)	Flow (1/s)	Depth (m) Fl	ow (1/s)	Depth (m)	Flow (1/s)
1.200	5.0	2.400	6.9	5.000	9.7	8.000	12.1
1.400	5.3	2.600	7.1	5.500	10.2	8.500	12.5
1.600	5.7	3.000	7.6	6.000	10.6	9.000	12.8
1.800	6.0	3.500	8.2	6.500	11.0	9.500	13.2
2.000	6.3	4.000	8.7	7.000	11.4		
2.200	6.6	4.500	9.2	7.500	11.8		

McAdam Design		Page 10
1C Montgomery House	Dublin Street North	
Castlereagh Business Park	Storm Water Flow	
478 Castlereagh Rd, Belfast,	Attenuated	Micro
Date 31/01/2025	Designed by PMcM	Drainage
File 2025-01-31 Dublin Stree	Checked by PA	Drainage
Innovyze	Network 2018.1.1	

Storage Structures for Storm

Porous Car Park Manhole: S1-1/01, DS/PN: 1.000

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	22.0
Membrane Percolation (mm/hr)	1000	Length (m)	5.0
Max Percolation (1/s)	30.6	Slope (1:X)	80.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	61.800	Membrane Depth (mm)	0

Porous Car Park Manhole: S1-1/02, DS/PN: 1.001

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	20.0
Membrane Percolation (mm/hr)	1000	Length (m)	10.0
Max Percolation (1/s)	55.6	Slope (1:X)	80.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	60.528	Membrane Depth (mm)	0

Porous Car Park Manhole: S1-1/03, DS/PN: 1.002

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	20.0
Membrane Percolation (mm/hr)	1000	Length (m)	10.2
Max Percolation (1/s)	56.7	Slope (1:X)	80.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	60.380	Membrane Depth (mm)	0

Cellular Storage Manhole: S1-1/06, DS/PN: 1.005

Depth (m) Area (m 2) Inf. Area (m 2) Depth (m) Area (m 2) Inf. Area (m 2)

0.000	30.0	0.0	0.801	0.0	0.0
0.800	30.0	0.0			

Porous Car Park Manhole: S1-2/02, DS/PN: 2.001

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	10.0
Membrane Percolation (mm/hr)	1000	Length (m)	17.0
Max Percolation (1/s)	47.2	Slope (1:X)	80.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	60.500	Membrane Depth (mm)	0

McAdam Design					
1C Montgomery House	Dublin Street North				
Castlereagh Business Park	Storm Water Flow				
478 Castlereagh Rd, Belfast,	Attenuated	Mirro			
Date 31/01/2025	Designed by PMcM	Drainage			
File 2025-01-31 Dublin Stree	Checked by PA	Diamage			
Innovyze	Network 2018.1.1				

Porous Car Park Manhole: S1-2/03, DS/PN: 2.002

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	5.0
Membrane Percolation (mm/hr)	1000	Length (m)	22.0
Max Percolation (1/s)	30.6	Slope (1:X)	80.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	60.700	Membrane Depth (mm)	0

Porous Car Park Manhole: S1-1/10, DS/PN: 1.009

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	20.0
Membrane Percolation (mm/hr)	1000	Length (m)	27.0
Max Percolation $(1/s)$	150.0	Slope (1:X)	80.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	59.500	Membrane Depth (mm)	0

Cellular Storage Manhole: S1-1/11, DS/PN: 1.010

Invert Level (m) 58.119 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth	(m)	Area	(m²)	Inf.	Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)
0.	000	1	110.0			0.0	1	.201		0.0			0.0
1.	200	1	110.0			0.0							

McAdam Design					
1C Montgomery House	Dublin Street North				
Castlereagh Business Park	Storm Water Flow				
478 Castlereagh Rd, Belfast,	Attenuated	Micco			
Date 31/01/2025	Designed by PMcM	Desinado			
File 2025-01-31 Dublin Stree	Checked by PA	Diamage			
Innovyze	Network 2018.1.1				

1 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 8 Number of Online Controls 3 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR Ratio R 0.331 Region Scotland and Ireland Cv (Summer) 0.750 M5-60 (mm) 18.200 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 300.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

ON

DVD Status

ON

Inertia Status

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600,
720, 960, 1440, 2160, 2880, 4320, 5760,
7200, 8640, 10080
Return Period(s) (years) 1, 30, 100
Climate Change (%) 10, 10, 10

U	JS/MH		Return	${\tt Climate}$	First	(X)	First (Y)	First (Z)	Overflow
PN 1	Name S	torm	Period	Change	Surch	arge	Flood	Overflow	Act.
	1/01 15				100/120				
1.001 S1	-1/02 180	Winter	1	+10%	30/15	Summer			
1.002 S1	-1/03 180	Winter	1	+10%	1/120	Winter			
1.003 S1	-1/04 180	Winter	1	+10%	1/60	Summer			
1.004 S1	-1/05 180	Winter	1	+10%	1/30	Winter			
1.005 S1	-1/06 180	Winter	1	+10%	1/15	Summer			
1.006 S1	-1/07 15	Winter	1	+10%	30/240	Winter			
1.007 S1	-1/08 15	Winter	1	+10%	30/180	Winter			
1.008 S1	-1/09 15	Winter	1	+10%	30/120	Winter			
2.000 S1	-2/01 15	Winter	1	+10%	30/120	Winter			
3.000 S1	-3/01 15	Winter	1	+10%					
2.001 S1	-2/02 600	Winter	1	+10%	30/120	Winter			
4.000 S1	-4/01 15	Winter	1	+10%					
2.002 S1	-2/03 600	Winter			1/600	Winter			
2.003 S1	-2/04 600	Winter	1	+10%	1/180	Winter			
2.004 S1	-2/05 600	Winter	1	+10%	1/120	Winter			
	-1/10 600		1		1/60				
	, = = = = = =								
			0	1982-20	18 Inno	vyze			

McAdam Design		Page 13
1C Montgomery House	Dublin Street North	
Castlereagh Business Park	Storm Water Flow	
478 Castlereagh Rd, Belfast,	Attenuated	Mirro
Date 31/01/2025	Designed by PMcM	Designation
File 2025-01-31 Dublin Stree	Checked by PA	Drainage
Innovyze	Network 2018.1.1	

$\frac{1 \text{ year Return Period Summary of Critical Results by Maximum Level (Rank 1)}}{\text{for Storm}}$

PN	US/MH Name	Water Level (m)	Surcharged Depth (m)		Flow /	Overflow (1/s)	Pipe Flow (1/s)	Status	Level Exceeded
1.001 1.002	S1-1/01 S1-1/02 S1-1/03 S1-1/04	60.368 60.367	-0.251 -0.134 0.013 0.150	0.000 0.000 0.000 0.000	0.06 0.06 0.09 0.14		10.4 5.5 8.7 8.9	OK OK SURCHARGED SURCHARGED	
1.004 1.005 1.006	S1-1/05 S1-1/06 S1-1/07	60.365 60.362 59.615	0.209 0.412 -0.241	0.000 0.000 0.000	0.10 0.04 0.08		9.5 3.0 7.9	SURCHARGED SURCHARGED OK	
1.008	S1-2/01	59.361 59.145	-0.220 -0.225 -0.255 -0.275	0.000 0.000 0.000	0.16 0.14 0.05 0.02		10.6 14.8 4.5 2.9	OK OK OK	
4.000 2.002 2.003	S1-2/02 S1-4/01 S1-2/03 S1-2/04 S1-2/05	60.853 59.096 59.096	-0.192 -0.287 0.018 0.330 0.416	0.000 0.000 0.000 0.000	0.02 0.01 0.02 0.04 0.04		1.6 1.6 2.0 2.7 3.3	OK OK SURCHARGED SURCHARGED SURCHARGED	
1.009	S1-1/10	59.095	0.506	0.000	0.09		10.3	SURCHARGED	

McAdam Design		Page 14
1C Montgomery House	Dublin Street North	
Castlereagh Business Park	Storm Water Flow	
478 Castlereagh Rd, Belfast,	Attenuated	Micro
Date 31/01/2025	Designed by PMcM	Designado
File 2025-01-31 Dublin Stree	Checked by PA	Dialilade
Innovyze	Network 2018.1.1	

$\frac{1 \text{ year Return Period Summary of Critical Results by Maximum Level (Rank 1)}}{\text{for Storm}}$

									Water
	US/MH		Return	${\tt Climate}$	First (X)	First (Y)	First (Z)	Overflow	Level
PN	Name	Storm	Period	Change	Surcharge	Flood	Overflow	Act.	(m)
1.010	S1-1/11	600 Winter	1	+10%	1/60 Summer				59.093
1.011	S1-1/12	30 Winter	1	+10%	30/15 Winter				56.475
1.012	S1-1/13	30 Winter	1	+10%	1/15 Winter				56.014
1.013	S1-1/14	60 Summer	1	+10%					55.324

	US/MH	Surcharged Depth		Flow /	Overflow	Pipe Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(1/s)	Status	Exceeded
1.010	S1-1/11	0.599	0.000	0.01		3.1	SURCHARGED	
1.011	S1-1/12	-0.348	0.000	0.02		5.2	OK	
1.012	S1-1/13	0.105	0.000	0.02		5.5	SURCHARGED	
1.013	S1-1/14	-0.427	0.000	0.01		5.5	OK	

©1982-2018 Innovyze

McAdam Design					
1C Montgomery House	Dublin Street North				
Castlereagh Business Park	Storm Water Flow				
478 Castlereagh Rd, Belfast,	Attenuated	Mirro			
Date 31/01/2025	Designed by PMcM	Designado			
File 2025-01-31 Dublin Stree	Checked by PA	Diamage			
Innovyze	Network 2018.1.1				

30 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 8 Number of Online Controls 3 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR Ratio R 0.331
Region Scotland and Ireland Cv (Summer) 0.750
M5-60 (mm) 18.200 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 300.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

ON

DVD Status

ON

Inertia Status

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600,
720, 960, 1440, 2160, 2880, 4320, 5760,
7200, 8640, 10080
Return Period(s) (years) 1, 30, 100
Climate Change (%) 10, 10, 10

US/M	H	Return	Climate	First	(X)	First (Y)	First (Z)	Overflow
PN Name	e Storm	Period	Change	Surch	arge	Flood	Overflow	Act.
1.000 S1-1/	01 240 Winter	30	+10%	100/120	Winter			
1.001 S1-1/	02 240 Winter	30	+10%	30/15	Summer			
1.002 S1-1/	03 240 Winter	30	+10%	1/120	Winter			
1.003 S1-1/	04 240 Winter	30	+10%	1/60	Summer			
1.004 S1-1/	05 240 Winter	30	+10%	1/30	Winter			
1.005 S1-1/	06 240 Winter	30	+10%	1/15	Summer			
1.006 S1-1/	07 960 Winter	30	+10%	30/240	Winter			
1.007 S1-1/	08 960 Winter	30	+10%	30/180	Winter			
1.008 S1-1/	09 960 Winter	30	+10%	30/120	Winter			
2.000 S1-2/	01 960 Winter	30	+10%	30/120	Winter			
3.000 S1-3/	01 15 Winter	30	+10%					
2.001 S1-2/	02 960 Winter	30	+10%	30/120	Winter			
4.000 S1-4/	01 15 Winter	30	+10%					
	03 960 Winter		+10%	1/600	Winter			
	04 960 Winter		+10%		Winter			
,	05 960 Winter		+10%	,	Winter			
	10 960 Winter			1/60				
1.009 51-1/	10 900 WINCEL	30	T100	1/60	MILLER			
		C	1982-20	18 Inno	vyze			

McAdam Design						
1C Montgomery House	Dublin Street North					
Castlereagh Business Park	Storm Water Flow					
478 Castlereagh Rd, Belfast,	Attenuated	Mirro				
Date 31/01/2025	Designed by PMcM	Designado				
File 2025-01-31 Dublin Stree	Checked by PA	Dialilade				
Innovyze	Network 2018.1.1					

PN	US/MH Name	Water Level (m)	Surcharged Depth (m)		Flow /	Overflow (1/s)	Pipe Flow (1/s)	Status	Level Exceeded
	S1-1/01		-0.135	0.000	0.03		4.8	OK	
1.001	S1-1/02	60.831	0.329	0.000	0.09		8.6	SURCHARGED	
1.002	S1-1/03	60.830	0.476	0.000	0.12		10.6	SURCHARGED	
1.003	S1-1/04	60.836	0.620	0.000	0.19		11.5	SURCHARGED	
1.004	S1-1/05	60.839	0.683	0.000	0.13		12.7	SURCHARGED	
1.005	S1-1/06	60.839	0.889	0.000	0.04		3.2	FLOOD RISK	
1.006	S1-1/07	60.177	0.321	0.000	0.04		3.8	SURCHARGED	
1.007	S1-1/08	60.174	0.487	0.000	0.06		4.4	SURCHARGED	
1.008	S1-1/09	60.171	0.585	0.000	0.05		5.2	SURCHARGED	
2.000	S1-2/01	60.168	0.768	0.000	0.01		0.7	SURCHARGED	
3.000	S1-3/01	60.769	-0.262	0.000	0.04		6.5	OK	
2.001	S1-2/02	60.167	0.879	0.000	0.02		2.1	SURCHARGED	
4.000	S1-4/01	60.870	-0.270	0.000	0.02		3.5	OK	
2.002	S1-2/03	60.167	1.089	0.000	0.02		2.2	SURCHARGED	
2.003	S1-2/04	60.167	1.401	0.000	0.04		2.9	SURCHARGED	
2.004	S1-2/05	60.167	1.488	0.000	0.05		3.6	SURCHARGED	
1.009	S1-1/10	60.167	1.578	0.000	0.09		10.9	SURCHARGED	

McAdam Design						
1C Montgomery House	Dublin Street North					
Castlereagh Business Park	Storm Water Flow					
478 Castlereagh Rd, Belfast,	Attenuated	Micro				
Date 31/01/2025	Designed by PMcM	Drainage				
File 2025-01-31 Dublin Stree	Checked by PA	Diamage				
Innovyze	Network 2018.1.1	1				

									Water
	US/MH		Return	${\tt Climate}$	First (X)	First (Y)	First (Z)	Overflow	Level
PN	Name	Storm	Period	Change	Surcharge	Flood	Overflow	Act.	(m)
1.010	S1-1/11	960 Winter	30	+10%	1/60 Summer				60.212
1.011	S1-1/12	60 Winter	30	+10%	30/15 Winter				57.094
1.012	S1-1/13	60 Winter	30	+10%	1/15 Winter				57.092
1.013	S1-1/14	60 Winter	30	+10%					55.325

		Surcharged	Flooded			Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(1/s)	Status	Exceeded
1.010	S1-1/11	1.718	0.000	0.01		4.0	SURCHARGED	
1.011	S1-1/12	0.272	0.000	0.02		7.0	SURCHARGED	
1.012	S1-1/13	1.182	0.000	0.03		5.7	SURCHARGED	
1.013	S1-1/14	-0.426	0.000	0.01		5.7	OK	

©1982-2018 Innovyze

McAdam Design	Page 18	
1C Montgomery House	Dublin Street North	
Castlereagh Business Park	Storm Water Flow	
478 Castlereagh Rd, Belfast,	Attenuated	Mirro
Date 31/01/2025	Designed by PMcM	Desinado
File 2025-01-31 Dublin Stree	Checked by PA	Dialilade
Innovyze	Network 2018.1.1	

100 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 8 Number of Online Controls 3 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR Ratio R 0.331 Region Scotland and Ireland Cv (Summer) 0.750 M5-60 (mm) 18.200 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 300.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

ON

DVD Status

ON

Inertia Status

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600,
720, 960, 1440, 2160, 2880, 4320, 5760,
7200, 8640, 10080
Return Period(s) (years) 1, 30, 100
Climate Change (%) 10, 10, 10

US/MH		Return	${\tt Climate}$	e First (X)		First (Y)	First (Z)	Overflow		
PN	Name	St	orm	Period	Change	Surch	arge	Flood	Overflow	Act.
1.000	S1-1/01	240	Winter	100	+10%	100/120	Winter			
1.001	S1-1/02	240	Winter	100	+10%	30/15	Summer			
1.002	S1-1/03	240	Winter	100	+10%	1/120	Winter			
1.003	S1-1/04	240	Winter	100	+10%	1/60	Summer			
1.004	S1-1/05	240	Winter	100	+10%	1/30	Winter			
1.005	S1-1/06	240	Winter	100	+10%	1/15	Summer			
1.006	S1-1/07	1440	Winter	100	+10%	30/240	Winter			
1.007	S1-1/08	1440	Winter	100	+10%	30/180	Winter			
1.008	S1-1/09	1440	Winter	100	+10%	30/120	Winter			
2.000	S1-2/01	1440	Winter	100	+10%	30/120	Winter			
3.000	S1-3/01	15	Winter	100	+10%					
2.001	S1-2/02	1440	Winter	100	+10%	30/120	Winter			
4.000	S1-4/01	15	Winter	100	+10%					
2.002	S1-2/03	1440	Winter	100	+10%	1/600	Winter			
2.003	S1-2/04	1440	Winter	100	+10%	1/180	Winter			
	S1-2/05			100	+10%	,	Winter			
	S1-1/10			100		1/60				
				©1	L982-20:	18 Inno	vyze			

McAdam Design		Page 19
1C Montgomery House	Dublin Street North	
Castlereagh Business Park	Storm Water Flow	
478 Castlereagh Rd, Belfast,	Attenuated	Mirro
Date 31/01/2025	Designed by PMcM	Designation
File 2025-01-31 Dublin Stree	Checked by PA	Diamage
Innovyze	Network 2018.1.1	

100 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

PN	US/MH Name	Water Level (m)	Surcharged Depth (m)		Flow /	Overflow (1/s)	Pipe Flow (1/s)	Status	Level Exceeded
1 000	S1-1/01	61 048	0.082	0.000	0.04		6 1	SURCHARGED	
	S1-1/02		0.546	0.000	0.10			SURCHARGED	
	S1-1/03		0.693	0.000	0.12			FLOOD RISK	
	S1-1/04		0.837	0.000	0.20			FLOOD RISK	
1.004	S1-1/05	61.055	0.899	0.000	0.14		13.9	FLOOD RISK	
1.005	S1-1/06	61.055	1.105	0.000	0.04		3.2	FLOOD RISK	
1.006	S1-1/07	60.531	0.675	0.000	0.04		3.7	SURCHARGED	
1.007	S1-1/08	60.529	0.842	0.000	0.06		4.2	SURCHARGED	
1.008	S1-1/09	60.526	0.940	0.000	0.05		4.9	SURCHARGED	
2.000	S1-2/01	60.526	1.126	0.000	0.01		0.6	SURCHARGED	
3.000	S1-3/01	60.774	-0.257	0.000	0.05		8.4	OK	
2.001	S1-2/02	60.526	1.238	0.000	0.02		1.8	SURCHARGED	
4.000	S1-4/01	60.873	-0.267	0.000	0.03		4.6	OK	
2.002	S1-2/03	60.524	1.446	0.000	0.02		2.2	SURCHARGED	
2.003	S1-2/04	60.523	1.757	0.000	0.04		3.0	SURCHARGED	
2.004	S1-2/05	60.523	1.844	0.000	0.05		3.7	SURCHARGED	
1.009	S1-1/10	60.523	1.934	0.000	0.08		10.2	SURCHARGED	

McAdam Design		Page 20
1C Montgomery House	Dublin Street North	
Castlereagh Business Park	Storm Water Flow	
478 Castlereagh Rd, Belfast,	Attenuated	Micro
Date 31/01/2025	Designed by PMcM	Drainage
File 2025-01-31 Dublin Stree	Checked by PA	Diamage
Innovyze	Network 2018.1.1	

100 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

									Water
	US/MH		Return	${\tt Climate}$	First (X)	First (Y)	First (Z)	Overflow	Level
PN	Name	Storm	Period	Change	Surcharge	Flood	Overflow	Act.	(m)
1.010	S1-1/11	1440 Winter	100	+10%	1/60 Summer				60.559
1.011	S1-1/12	60 Winter	100	+10%	30/15 Winter				57.614
1.012	S1-1/13	60 Winter	100	+10%	1/15 Winter				57.611
1.013	S1-1/14	60 Winter	100	+10%					55.329

		Surcharged	Flooded			Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(1/s)	Status	Exceeded
1.010	S1-1/11	2.065	0.000	0.01		4.3	FLOOD RISK	
1.011	S1-1/12	0.791	0.000	0.02		7.5	SURCHARGED	
1.012	S1-1/13	1.701	0.000	0.03		6.5	FLOOD RISK	
1.013	S1-1/14	-0.423	0.000	0.01		6.5	OK	

©1982-2018 Innovyze

An Bord Pleanala, 64 Marlborough Street, Dublin 1.

Email: bord@pleanala.ie

26th July, 2024

Re: Dublin Street and lands to the northeast of Dublin Street, Old Cross Square, Monaghan Town, townlands of Roosky and Tirkeenan, Co. Monaghan.

The proposed development will assist the regeneration of Dublin Street and back lands to the north, the Diamond Centre Car Park and Old Cross Square.

Case No: ABP-319743-24

Dear Sir/Madam.

We refer to your recent correspondence regarding request for written opinion from Board Pleanala on the information to be contained in an environmental Impact assessment (EIA) to be prepared in respect of the above-mentioned development.

Inland Fisheries Ireland (IFI) is a statutory agency responsible for inland fisheries in Ireland. Under section 7(1) of the Inland Fisheries Act 2010 (No. 10 of 2010) the principal function of IFI is the protection, management and conservation of the inland fisheries resource.

The Shambles River, which is a tributary of the Monaghan Blackwater River, flows under Old Cross Square in the Regeneration Area. The Shambles River contains fisheries habitat and supports stock of coarse fish and pike. The WFD Ecological status of the waterbody at this location, Shambles_010, is Poor and At Risk of not achieving Good status.

The Monaghan Blackwater River is valuable from a fisheries perspective as it supports stocks of trout and lamprey among other species.

The Ecological status of the waterbody at this location, Blackwater (Monaghan)_040, is Poor and At Risk of not achieving Good status.

Issues to be addressed in the EIA with regard to the fisheries environment relate largely to surface water management in the project area both during and following construction works.

Surface water management during construction phase

All construction work should be in accordance with a Construction Environmental Management Plan which ensures that good construction practices are adopted throughout the construction period and contains mitigation measures to deal with potential adverse impacts on the environment identified in advance of the scheme.

Potential issues that may arise on site and associated mitigation measures are addressed in IFI's document *Guidelines on protection of fisheries during construction works in and adjacent to waters*, which are available on IFI's website.

Ground preparation and associated construction works, including large-scale topographic alteration and the creation of roads and buildings have significant potential to cause the release of sediments and pollutants into surrounding watercourses. Pollution of the adjacent freshwaters from poor on-site construction practices could have a significantly negative impact on water quality and the aquatic fauna and flora.

Construction works should be planned in a manner which prevents extensive tracts of soils being exposed at any time and which ensures a more progressive clearance of greenfield lands, We recommend an undisturbed filter strip (minimum 10m) is left along the watercourse. Protective silt fencing should be erected to safeguard the stream in advance of any construction work, no ground clearance, earth moving, stock –piling or machinery movement should occur within this protected area.

In the preparation of a CEMP, particular account must be taken in relation to bio security. To prevent the spread of hazardous invasive species and pathogens, high pressure steam cleaning of all items of plant and equipment to be used at and adjacent to waters must be undertaken prior to use. All PPE must be disinfected prior to use.

• Storm water management

We recommend that storm water management should be designed in accordance with the recently published Department of Housing, Local Government and Heritage guidance document **Nature-based solutions for the management of rainwater and surface water run-off in urban areas.** The document identifies the need for a significant change in the way to plan, design, build and maintain urban areas through the replacement of impermeable surfacing with nature-based planted areas designed to absorb, retain, store and treat urban runoff prior to discharge back to the environment.

Thank you for consulting with us regarding this matter.

Yours faithfully,

Michaela Kirrane

Senior Fisheries Environmental Officer – IFI, Dublin

Michaelo Kirrore

EPA RIVER QUALITY SURVEYS: BIOLOGICAL

Biotic indices ("Q Values") reflect average water quality at any location as follows:

Q Value*	WFD Status	Pollution Status	Condition **
Q5, Q4-5	High	Unpolluted	Satisfactory
Q4	Good	Unpolluted	Satisfactory
Q3-4	Moderate	Slightly polluted	Unsatisfactory
Q3, Q2-3	Poor	Moderately polluted	Unsatisfactory
Q2, Q1-2,	Bad	Seriously polluted	Unsatisfactory

^{*} These Values are based primarily on the relative proportions of pollution sensitive to tolerant macroinvertebrates (the young stages of insects primarily but also snails, worms, shrimps etc.) resident at a river site. The intermediate values (Q1-2, 2-3, 3-4 etc.) denote transitional conditions. The scheme mainly reflects the effects of organic pollution (i.e. de-oxygenation and eutrophication) but where a toxic effect is apparent or suspected the suffix '0' is added to the biotic index (e.g. Q1/0, 2/0 or 3/0). An asterisk after the Q value (e.g. Q3*) indicates something worthy of special attention, typically heavy siltation of the substratum.

Also presented is a description of the exact location surveyed with relevant OS Grid Reference, WFD river water body code and relevant Local Authority.

^{** &}quot;Condition" refers to the likelihood of interference with beneficial or potential beneficial uses.

Hydrometric Area 03

Name	Code
BLACKWATER (MONAGHAN)	03B01
CLONTIBRET STREAM	03C01
CONAWARY (LOWER)	03C02
MOUNTAIN WATER	03M01
SCOTSTOWN	03S02
SHAMBLES	03S01
SIX MILE LAKE STREAM	03S03

BLACKWATER (MONAGHAN)

03B01

Date Surveyed (last survey year only): 07/06/22, 08/06/22

Biological Quality Rating (Q Values)

Station Code	1973	1977	1981	1983	1985	1989	1993	1996	1998	2001	2004	2007	2010	2013	2017	2019	2022
RS03B010050						3											
RS03B010090						3-4											
RS03B010100	4-5	4-5	4-5	3-4	3-4												
RS03B010130						3-4	4	4	4	3	3	4	4	4	4	4	4
RS03B010200	3-4	3-4	4	3-4	3-4												
RS03B010300	4	3-4	4	4	3-4	3-4	4	4	4	4	4	3-4	3-4	4	4	4	4
RS03B010400	4	3-4	4	3-4	3-4	3-4											
RS03B010500	4	3-4	4	3-4	3-4												
RS03B010510						3	3	3-4	3	3	3-4	3-4	3-4	4	4	4	4
RS03B010580						3											
RS03B010600	3	2	3	2-3	3	2-3	3										
RS03B010650						2-3		2-3	3	3/0	3	3	3	3-4	3-4	4	3-4
RS03B010700	3	3	2-3	2-3	2-3	2-3	3										
RS03B010800	3-4	3-4	3	3	3	3	3	2-3	3	3	3	3	3	3-4	3-4	3-4	3-4

Most Recent Assessment:

The Blackwater (Monaghan) has remained in good condition in its upper and middle reaches (0130, 0300 and 0510); however the invasive plant, Giant Hogweed was recorded at all 3 sites.

Site 0650 (Faulkland Br (Upr)) declined to from good to moderate condition; there was a lot of algae in the channel at the time of survey and the river banks at the site are severely damaged by livestock. Site 0800 remains in moderate condition.

Station Code	Station Location	WFD Waterbody Code	Easting	Northing	Local Authority
RS03B010050	BLACKWATER (MONAGHAN) - Br E of Knockatallen*	IE_NB_03B010130	257528	338745	Monaghan County Council
RS03B010090	BLACKWATER (MONAGHAN) - Br N of Gola*	IE_NB_03B010130	258735	337345	Monaghan County Council
RS03B010100	BLACKWATER (MONAGHAN) - Br 1 km u/s Scotstown*	IE_NB_03B010130	260205	337086	Monaghan County Council
RS03B010130	1.5km d/s Scotstown Br.	IE_NB_03B010130	261394	335942	Monaghan County Council
RS03B010200	BLACKWATER (MONAGHAN) - Br in Ballinode	IE_NB_03B010300	262919	335810	Monaghan County Council
RS03B010300	1st Br d/s Ballinode	IE_NB_03B010300	263807	335774	Monaghan County Council
RS03B010400	BLACKWATER (MONAGHAN) - Br at Crosses	IE_NB_03B010510	265562	335745	Monaghan County Council
RS03B010500	BLACKWATER (MONAGHAN) - Br nr Milltown	IE_NB_03B010510	266383	334653	Monaghan County Council
RS03B010510	250m d/s Br nr Milltown	IE_NB_03B010510	266597	334547	Monaghan County Council
RS03B010580	BLACKWATER (MONAGHAN) - Br NE of Blackwater Vale	IE_NB_03B010800	267505	335228	Monaghan County Council
RS03B010600	BLACKWATER (MONAGHAN) - Br on Monaghan- Aughnacloy Rd	IE_NB_03B010800	267515	335243	Monaghan County Council
RS03B010650	Faulkland Br (Upr)	IE_NB_03B010800	269181	337024	Monaghan County Council
RS03B010700	BLACKWATER (MONAGHAN) - Faulkland Br	IE_NB_03B010800	270280	337836	Monaghan County Council
RS03B010800	Newmills Br	IE_NB_03B010800	271895	338765	Monaghan County Council

CLONTIBRET STREAM 03C01

Date Surveyed (last survey year only): 07/06/22

Biological Quality Rating (Q Values)

Station Code	1989	1990	1993	1996	1998	2001	2004	2007	2010	2013	2017	2019	2022
RS03C010600	3		3	3	3	3	3	3	2-3	3	3	3-4	3-4
RS03C010900	1	2-3	3	3	3								
RS03C011100	2-3	3				3	3		3	3	2-3	3	3-4
RS03C011200			3	3	3								
RS03C011400	3		3-4	4	3	3	3	3	3	3	3	3	3-4*

Most Recent Assessment:

The Clontibret Stream was sampled at 3 sites in 2022; 0600, 1100 and 1400. Site 0600 remained in moderate ecological condition. Both 1100 and 1400 whilst still in unsatisfactory condition improved from poor to moderate. Siltation is an issue at site 1400 (Br E of Killyneill X-Roads).

Station Code	Station Location	WFD Waterbody Code	Easting	Northing	Local Authority
RS03C010600	Br in Clontibret	UKGBNI1NB03030820 2	275743	328905	Monaghan County Council
RS03C010900	CLONTIBRET STREAM - 3rd Br d/s Clontibret	UKGBNI1NB03030820 2	275528	329912	Monaghan County Council
RS03C011100	CLONTIBRET STREAM - Br SW of Clerran	UKGBNI1NB03030820 2	274430	331645	Monaghan County Council

Station Code	Station Location	WFD Waterbody Code	Easting	Northing	Local Authority
RS03C011200	CLONTIBRET STREAM - Br NE of Castleshane Ho	IE_NB_03C011200	274019	332227	Monaghan County Council
RS03C011400	Br E of Killyneill X-Roads	IE_NB_03C011400	273822	335680	Monaghan County Council

CONAWARY (LOWER) 03C02

Date Surveyed (last survey year only): 08/06/22

Biological Quality Rating (Q Values)

Station Code	1989	1990	1993	1996	1998	2001	2004	2007	2010	2013	2017	2019	2022
RS03C021100	3		3	3	3	3	3		3	3	3	2-3	3
RS03C021200	2	3	3										
RS03C021300	2-3			3	3	3	3	3	3	3	3	3	3

Most Recent Assessment:

The Conawary Lower was sampled at two sites in 2022; 1100 (White Br.) and 1300 (Br. u/s Blackwater R. confluence). A modest improvement was noted in site 1100, however it remains in poor ecological condition. There was no change in site 1400 which also remains in poor ecological condition.

Station Code	Station Location	WFD Waterbody Code	Easting	Northing	Local Authority
RS03C021100	CONAWARY (LOWER) - White Br	IE_NB_03C021100	263980	332564	Monaghan County Council
RS03C021200	CONAWARY (LOWER) - 2nd Br u/s Blackwater R	IE_NB_03C021300	265068	334277	Monaghan County Council
RS03C021300	Br u/s Blackwater R confl	IE_NB_03C021300	265441	334582	Monaghan County Council

MOUNTAIN WATER 03M01

Date Surveyed (last survey year only): 09/06/22, 13/06/22

Biological Quality Rating (Q Values)

Station Code	1973	1977	1981	1983	1985	1989	1993	1994	1996	1998	2001	2004	2007	2010	2013	2017	2019	2020	2021	2022
RS03M010100	5	5	5	5	5	5	4-5	5	4-5	4-5	4-5	4-5	4	4	4-5	4-5	5	4-5	4-5	4-5
RS03M010150								3-4												
RS03M010200	5	4-5	4-5	5	5	5	1/0	3-4	4-5	4-5	4-5	4	4	4	4-5	4	4-5			4-5
RS03M010260						5	2/0	3-4												
RS03M010300			5	5	5															
RS03M010400	4-5	4	4-5	4-5	4-5	4-5	2/0	3-4	4	4-5	4	3-4	3-4	3-4	4	4-5	5	4-5	4-5	4-5
RS03M010500	4	2	3-4	3	3	3	3/0	3	3-4	3	3	3	3	3	3	3	4			4
RS03M010550						3														
RS03M010600	4	3	2-3	3	3	3														
RS03M010650			4	4-5	3	3	3/0	3	3	3	3	3		3-4	3	3-4	4			3-4

Most Recent Assessment:

The Mountain Water river was surveyed at six sites in June 2022. The three sites in the upper reaches; 0100, 0200 and 0400 all remained as sites in high ecological condition (Q 4-5). Site 0500 remains in good condition but there was a lot of algae present at the time of survey. Site 0650 (Br. N of Glaslough) had deteriorated from good to moderate condition as there was a notable drop in the numbers of sensitive macroinvertebrate species.

Station Code	Station Location	WFD Waterbody Code	Easting	Northing	Local Authority
RS03M010100	Coyle's Br.	UKGBNI1NB03030825 4	259739	346174	Monaghan County Council
RS03M010150	MOUNTAIN WATER - 1km d/s St 0100	IE_NB_03M010200	260962	344924	Monaghan County Council
RS03M010200	Br NE of Golan	IE_NB_03M010200	262658	343972	Monaghan County Council
RS03M010260	MOUNTAIN WATER - Br NNE of Derrylin	IE_NB_03M010400	264363	343152	Monaghan County Council
RS03M010300	MOUNTAIN WATER - Br N of Rarutagh	IE_NB_03M010400	265476	342987	Monaghan County Council
RS03M010400	1st Br. u/s Emyvale	IE_NB_03M010400	267070	343349	Monaghan County Council
RS03M010500	Br. 1.1km d/s Emyvale	IE_NB_03M010500	268458	343141	Monaghan County Council
RS03M010550	MOUNTAIN WATER - Br NNE of Dundonagh	IE_NB_03M010650	269301	342054	Monaghan County Council
RS03M010600	MOUNTAIN WATER - Br at Glannan	IE_NB_03M010650	270539	342363	Monaghan County Council
RS03M010650	MOUNTAIN WATER - Br N of Glaslough	IE_NB_03M010650	272001	342191	Monaghan County Council

SCOTSTOWN 03S02

Date Surveyed (last survey year only): 13/06/22

Biological Quality Rating (Q Values)

Station Code	1989	1993	1996	1998	2001	2004	2007	2010	2013	2017	2018	2019	2022
RS03S020200	5	5	5	4-5	4-5	4-5	4-5	4-5	4-5	4	4-5	4-5	4-5
RS03S020400	5	4-5	4-5	4	4-5	4		4	4-5	4-5		4-5	4-5
RS03S020500	4-5	4-5	4-5	4-5	4	4	4	4	4-5	4-5		4-5	4-5

Most Recent Assessment:

All 3 sites (0200, 0400 and 0500) on the Scotstown River remained in high ecological condition (Q4-5) in 2022.

Station Code	Station Location	WFD Waterbody Code	Easting	Northing	Local Authority
RS03S020200	Br S of Knockballyroney	UKGBNI1NB03030825 5	258846	341373	Monaghan County Council
RS03S020400	SCOTSTOWN - Br at Mill S of Dromscor	UKGBNI1NB03030825 5	260056	339707	Monaghan County Council
RS03S020500	Br u/s Scotstown Br	IE_NB_03S020500	261108	337606	Monaghan County Council

SHAMBLES 03S01

Date Surveyed (last survey year only): 08/06/22

Biological Quality Rating (Q Values)

Station Code	2007	2010	2013	2017	2019	2022
RS03S010500	2-3	2-3	2-3	2-3	2-3	2-3*

Most Recent Assessment:

Poor ecological conditions were still evident in the urban site (0500) of the Shambles River in 2022.

Station Code	Station Location	WFD Waterbody Code	Easting	Northing	Local Authority
RS03S010500	Culvert u/s of N2 Roundabout, Armagh Road.	IE_NB_03S010500	268023	334968	Monaghan County Council

SIX MILE LAKE STREAM

03S03

Date Surveyed (last survey year only): 31/12/89

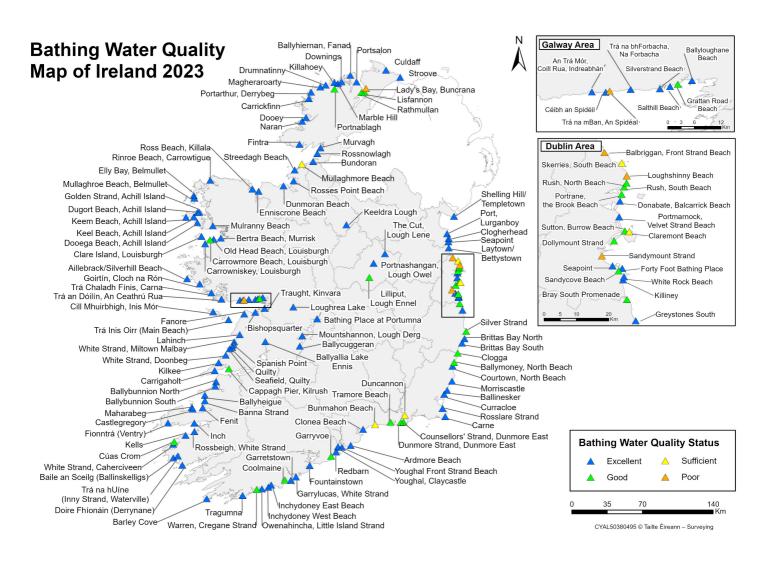
Biological Quality Rating (Q Values)

Station Code	1989
RS03S030400	3-4
RS03S030700	3-4

Most Recent Assessment:

Station Code	Station Location	WFD Waterbody Code	Easting	Northing	Local Authority
RS03S030400	SIX MILE LAKE STREAM - Br E of Dromore	IE_NB_03C011200	273420	327670	Monaghan County Council
RS03S030700	SIX MILE LAKE STREAM - Br u/s Clontibret Stream	IE_NB_03C011200	274759	329468	Monaghan County Council

Table of Classification of Identified Bathing Waters for 2020 to 2023


The table below lists the classifications for all 148 Identified Bathing Waters in 2023. The classifications are for the period 2020 to 2023.

Local authority	Identified Bathing Water	2020	2021	2022	2023
Clare County Council	Ballyallia Lake, Ennis	Excellent	Excellent	Excellent	Excellent
	Ballycuggeran	Excellent	Excellent	Excellent	Excellent
	Bishopsquarter	Excellent	Excellent	Excellent	Excellent
	Cappagh Pier, Kilrush	Excellent	Excellent	Good	Good
	Carrigaholt	New	Excellent	Excellent	Excellent
	Fanore	Excellent	Excellent	Excellent	Excellent
	Kilkee	Excellent	Excellent	Excellent	Excellent
	Lahinch	Excellent	Excellent	Excellent	Excellent
	Mountshannon, Lough Derg	Excellent	Excellent	Excellent	Excellent
	Quilty	New	Excellent	Excellent	Excellent
	Seafield, Quilty	Excellent	Excellent	Excellent	Excellent
	Spanish Point	Excellent	Excellent	Excellent	Excellent
	White Strand, Doonbeg	Excellent	Excellent	Excellent	Excellent
	White Strand, Miltown Malbay	Excellent	Excellent	Excellent	Excellent
Cork County Council	Barley Cove	Excellent	Excellent	Excellent	Excellent
	Coolmaine	Good	Good	Good	Good
	Fountainstown	Excellent	Excellent	Excellent	Excellent
	Garretstown	Excellent	Excellent	Excellent	Excellent
	Garrylucas, White Strand	Excellent	Excellent	Excellent	Excellent
	Garryvoe	Sufficient	Sufficient	Good	Good
	Inchydoney East Beach	Excellent	Excellent	Excellent	Excellent
	Inchydoney West Beach	Excellent	Excellent	Excellent	Excellent
	Owenahincha, Little Island Strand	Excellent	Excellent	Excellent	Excellent
	Redbarn	Excellent	Excellent	Excellent	Excellent
	Tragumna	Excellent	Excellent	Excellent	Excellent
	Warren, Cregane Strand	Excellent	Good	Good	Good
	Youghal Claycastle	Excellent	Excellent	Excellent	Excellent
	Youghal, Front Strand Beach	Good	Excellent	Excellent	Excellent
Donegal County	Ballyhiernan, Fanad	Excellent	Excellent	Excellent	Excellent
Council	Bundoran	Excellent	Excellent	Excellent	Excellent
	Carrickfinn	Excellent	Excellent	Excellent	Excellent
	Culdaff	Excellent	Excellent	Excellent	Excellent
	Dooey	Excellent	Excellent	Excellent	Excellent
	Downings	Excellent	Excellent	Excellent	Excellent
	Drumnatinny	Excellent	Excellent	Excellent	Excellent
	Fintra	Excellent	Excellent	Excellent	Excellent
	Killahoey	Excellent	Excellent	Excellent	Excellent

Local Authority	Identified Bathing Water	2020	2021	2022	2023
Donegal County	Lady's Bay, Buncrana	Sufficient	Poor	Poor	Poor
Council continued	Lisfannon	Good	Good	Good	Good
	Magheraroarty	Excellent	Excellent	Excellent	Excellent
	Marble Hill	Excellent	Excellent	Excellent	Excellent
	Murvagh	Excellent	Excellent	Excellent	Excellent
	Naran	Excellent	Excellent	Excellent	Excellent
	Portarthur, Derrybeg	Good	Good	Good	Excellent
	Portnablagh	Good	Excellent	Good	Good
	Portsalon	Excellent	Excellent	Excellent	Excellent
	Rathmullan	Good	Good	Good	Good
	Rossnowlagh	Excellent	Excellent	Excellent	Excellent
	Stroove	Excellent	Excellent	Excellent	Excellent
Dublin City Council	Dollymount Strand	Good	Good	Good	Good
-	Sandymount Strand	Sufficient	Sufficient	Sufficient	Poor
Dun Laoghaire-	Forty Foot Bathing Place	Excellent	Excellent	Excellent	Excellent
Rathdown County	Killiney	Excellent	Excellent	Excellent	Excellent
Council	Sandycove Beach	Good	Excellent	Good	Good
	Seapoint	Excellent	Excellent	Excellent	Excellent
	White Rock Beach	Excellent	Excellent	Excellent	Excellent
Fingal County Council	Balbriggan, Front Strand Beach	Poor	Poor	Poor	Poor
	Claremont Beach	Sufficient	Sufficient	Sufficient	Sufficient
	Donabate, Balcarrick Beach	Excellent	Excellent	Excellent	Excellent
	Loughshinny Beach	Sufficient	Sufficient	Sufficient	Poor
	Portmarnock, Velvet Strand Beach	Excellent	Excellent	Excellent	Excellent
	Portrane, the Brook Beach	Good	Good	Excellent	Good
	Rush North Beach	Good	Excellent	Excellent	Good
	Rush, South Beach	Excellent	Excellent	Excellent	Good
	Skerries, South Beach	Good	Good	Sufficient	Sufficient
	Sutton, Burrow Beach	Excellent	Good	Good	Good
Galway City Council	Ballyloughane Beach	Sufficient	Good	Good	Excellent
	Grattan Road Beach	Sufficient	Sufficient	Good	Good
	Salthill Beach	Excellent	Excellent	Excellent	Excellent
	Silverstrand Beach	Excellent	Excellent	Excellent	Excellent
Galway County	Aillebrack/Silverhill Beach	n/a	New	New	Excellent
Council	An Trá Mór, Coill Rua, Indreabhán	Excellent	Excellent	Excellent	Excellent
	Bathing Place at Portumna	Excellent	Excellent	Excellent	Excellent
	Céibh an Spidéil	Excellent	Excellent	Excellent	Excellent
	Cill Mhuirbhigh, Inis Mór	Excellent	Excellent	Excellent	Excellent
	Goirtín, Cloch na Rón	Excellent	Excellent	Excellent	Excellent
	Loughrea Lake	Excellent	Excellent	Excellent	Excellent
	Trá an Dóilín, An Ceathrú Rua	Excellent	Excellent	Excellent	Excellent
	Trá Chaladh Fínis, Carna	Excellent	Excellent	Excellent	Excellent
	Trá Inis Oírr (Main Beach)	Excellent	Excellent	Excellent	Excellent

Local Authority	Identified Bathing Water	2020	2021	2022	2023
Galway County	Trá na bhForbacha, Na Forbacha	Good	Good	Excellent	Excellent
Council continued	Trá na mBan, An Spidéal	Sufficient	Sufficient	Poor	Poor
	Traught, Kinvara	Excellent	Good	Excellent	Excellent
Kerry County Council	Baile an Sceilg (Ballinskelligs)	Excellent	Excellent	Excellent	Excellent
	Ballybunnion North	Good	Excellent	Excellent	Excellent
	Ballybunnion South	Excellent	Excellent	Excellent	Excellent
	Ballyheigue	Excellent	Excellent	Excellent	Excellent
	Banna Strand	Excellent	Excellent	Excellent	Excellent
	Castlegregory	Excellent	Excellent	Excellent	Excellent
	Cúas Crom	Poor	Sufficient	Good	Good
	Doire Fhíonáin (Derrynane)	Excellent	Excellent	Excellent	Excellent
	Fenit	Excellent	Excellent	Excellent	Excellent
	Fionntrá (Ventry)	Excellent	Excellent	Excellent	Excellent
	Inch	Excellent	Excellent	Excellent	Excellent
	Kells	Excellent	Excellent	Excellent	Excellent
	Maharabeg	Excellent	Excellent	Excellent	Excellent
	Rossbeigh, White Strand	Excellent	Excellent	Excellent	Excellent
	Trá na hUíne (Inny Strand,	Good	Excellent	Excellent	Excellent
	Waterville)				
	White Strand, Caherciveen	Excellent	Excellent	Excellent	Excellent
Leitrim County Council	Keeldra Lough	Excellent	Excellent	Excellent	Excellent
Louth County Council	Clogherhead	Excellent	Excellent	Excellent	Excellent
	Port, Lurganboy	Excellent	Excellent	Excellent	Excellent
	Seapoint	Excellent	Excellent	Excellent	Excellent
	Shelling Hill/Templetown	Excellent	Excellent	Excellent	Excellent
Mayo County Council	Bertra Beach, Murrisk	Good	Good	Excellent	Excellent
	Carrowmore Beach, Louisburgh	Excellent	Good	Good	Good
	Carrowniskey, Louisburgh	Good	Excellent	Excellent	Excellent
	Clare Island, Louisburgh	Excellent	Good	Excellent	Excellent
	Dooega Beach, Achill Island	Excellent	Excellent	Excellent	Excellent
	Dugort Beach, Achill Island	Excellent	Excellent	Excellent	Excellent
	Elly Bay, Belmullet	Excellent	Excellent	Excellent	Excellent
	Golden Strand, Achill Island	Excellent	Excellent	Excellent	Excellent
	Keel Beach, Achill Island	Excellent	Excellent	Excellent	Excellent
	Keem Beach, Achill Island	Excellent	Excellent	Excellent	Excellent
	Mullaghroe Beach, Belmullet	Excellent	Excellent	Excellent	Excellent
	Mulranny Beach	Excellent	Excellent	Excellent	Excellent
	Old Head Beach, Louisburgh	Good	Good	Excellent	Excellent
	Rinroe Beach, Carrowtigue	Excellent	Excellent	Excellent	Excellent
	Ross Beach, Killala	Excellent	Excellent	Excellent	Excellent
Meath County Council	Laytown/Bettystown	Excellent	Excellent	Excellent	Excellent
Sligo County Council	Dunmoran Beach	Excellent	Good	Excellent	Excellent
	Enniscrone Beach	Good	Sufficient	Good	Excellent
	Mullaghmore Beach	Sufficient	Sufficient	Sufficient	Sufficient
	Rosses Point Beach	Excellent	Excellent	Excellent	Excellent

Local Authority	Identified Bathing Water	2020	2021	2022	2023
Sligo County Council continued	Streedagh Beach	Excellent	Excellent	Excellent	Excellent
Waterford City	Ardmore Beach	Excellent	Excellent	Excellent	Excellent
and County	Bunmahon Beach	Good	Good	Sufficient	Sufficient
Council	Clonea Beach	Excellent	Excellent	Excellent	Excellent
	Counsellors' Strand, Dunmore East	Excellent	Excellent	Good	Good
	Dunmore Strand, Dunmore East	Excellent	Excellent	Excellent	Good
	Tramore Beach	Excellent	Excellent	Excellent	Good
Westmeath	Lilliput, Lough Ennell	Poor	Changes	Good	Good
County Council	Portnashangan, Lough Owel	Excellent	Excellent	Excellent	Excellent
	The Cut, Lough Lene	Excellent	Excellent	Excellent	Excellent
Wexford County	Ballinesker	Excellent	Excellent	Excellent	Excellent
Council	Ballymoney, North Beach	Good	Excellent	Excellent	Good
	Carne	Excellent	Excellent	Excellent	Excellent
	Courtown, North Beach	Excellent	Excellent	Excellent	Excellent
	Curracloe	Excellent	Excellent	Excellent	Excellent
	Duncannon	Sufficient	Sufficient	Sufficient	Sufficient
	Morriscastle	Excellent	Excellent	Excellent	Excellent
	Rosslare Strand	Excellent	Excellent	Excellent	Excellent
Wicklow County	Bray South Promenade	Excellent	Good	Good	Good
Council	Brittas Bay North	Excellent	Excellent	Excellent	Excellent
	Brittas Bay South	Excellent	Excellent	Excellent	Excellent
	Clogga	Excellent	Excellent	Good	Good
	Greystones South	Excellent	Excellent	Excellent	Excellent
	Silver Strand	Good	Excellent	Excellent	Good

9 Biodiversity

- 9.1 Preliminary Ecological Assessment (PEA)
- 9.2 INNS Survey
- 9.3 INNS Management Plan
- 9.4 Ecological Survey for Bats
- 9.5 Tree Survey Report
- 9.6 AA Screening Report & NIS
- 9.7 Mitigation Measures
- 9.8 Biodiversity Figures

LAYDE CONSULTING

Preliminary Ecological Appraisal

Proposed Regeneration Scheme, Dublin Street North, Monaghan

Client: Carlin Planning Ltd

Project Reference: P676-1

Issue Date: December 2024

Table of Contents

EXECU	TIVE SUIVINARY	I
1.0	INTRODUCTION	1
1.1	Report Brief & Scope	1
1.2	Limitations	1
1.3	Site Overview & Development Proposals	2
1.4	Statement of Authority	2
2.0	LEGISLATION AND POLICY CONTEXT	2
2.1	Habitats Directive	2
2.2	Wildlife Acts	3
2.3	Birds and Natural Habitats Regulations	3
	Designation of European Sites	3
	Other Protections & Designations	3
2.6	Species Specific Legislation	4
3.0	METHODOLOGY	7
3.1	Desk Based Assessment	7
3.2	Field Surveys & Habitat Mapping	8
4.0	RESULTS - DESK BASED ASSESSMENT	9
4.1	Natura 2000 Sites & Designations	9
	National Biodiversity Data Centre	10
5.0	HABITAT SURVEYS	11
5.1	WS1 Scrub	11
5.2	ED2 Spoil & Bare Ground	12
	ED3 Recolonising Bare Ground	12
5.4	WD1 (Mixed) Broadleaved Woodland	13
5.5	WD2 – Mixed conifer and broadleaved woodland	14
5.6	WD5 Scattered Trees & Parklands	14
5.7	WS3 Ornamental non-native Shrub	15
	WL2 Treelines	16
	BC1 Stone Walls and Other Stonework	16
	GA2 - Amenity Grassland (improved)	17
	GA1 – Improved Agricultural Grassland	17
5.12	BL3 Artificial Surfaces	18
6.0	FAUNA	18
	Bats (all species)	18
6.2	Badger	18
	Red Squirrel	18
	Otters	19
	Other mammals	19
	Amphibians	19
	Freshwater Fish	19 19
	Nesting Birds Invasive Species	19
	•	
7.0	CONCLUSIONS AND RECOMMENDATIONS	20

FIGURES

- Figure 1 Proposed development area, lands to the rear of Dublin Street North
- Figure 2 Natura 200 search results (15km search radius)
- Figure 3 Habitat Classification Map
- Figure 4 Dense scrub (WS1) within eastern parts of the site
- Figure 5 Colonising scrub within partially cleared lands adjacent to No.59d
- Figure 6 Example of spoil & bare ground to rear of building No.43a / 42d
- Figure 7 Mixed broadleaved woodland (WD1)
- Figure 8 Woodland with exposed ground at the base due to human activity
- Figure 9 Mixed conifer / broadleaved woodland east of the site
- Figure 10 One of two prominent tree features within grass amenity area
- Figure 11 Second Ash tree within scattered trees & parkland habitat
- Figure 12 Dense stands of snowberry, bindweed, and Boxleaf Honeysuckle
- Figure 13 Treeline adjacent to the site comprising of Ash & Willow spp
- Figure 14 Example of exposed stone wall structure (rear of No.46d)
- Figure 15 Amenity grassland to rear of No.34a & 33c
- Figure 16 Amenity grassland along public footpath edge
- Figure 17 Improved agricultural grassland (right) of laneway

APPENDICES

Appendix 1 - National Biodiversity Data Centre search results

EXECUTIVE SUMMARY

Layde Consulting was appointed by Carlin Planning Ltd to undertake a Preliminary Ecological Appraisal (PEA) for a proposed Regeneration Scheme within Monaghan town, extending to lands at the rear of Dublin Street North. This report summarises the key findings in relation to local ecology, and protected national and international designations within close proximity to the site, along with further recommendations should these be required.

A desk study search of the National Parks and Wildlife Serve (NPWS) GIS database was undertaken in order to identify Natura 2000 designations, proposed or designated Natural Heritage Areas (pNHA's & NHA's). The search criteria incorporated an area of 15km radius of the site, and the search results indicated that the site is not located within any Natura 2000 designation. The closest Natura 2000 designation was identified to be more than 10km away from the site (Slieve Beagh SPA), although the site development proposals do not have any source-pathway-receptor linkages to any of the identified SPA or SAC designations, and are unlikely to support any qualifying interests in terms of breeding bird species. In addition to the Natura 2000 sites, a review was undertaken of the NPWS databases for other protected designations within close proximity to the site, in particular Proposed Natural Heritage Areas. The closest protected designation to the site is Wright's Wood pNHA which is located approximately 1.75km to the west, however no feasible source-pathway-receptor linkages were identified between the site proposals and any of the pNHA designations.

It is noted that the Lough Neagh & Lough Beg RAMSAR and SPA sites are located approximately 33km and 38km northeast of the site respectively. Although highly unlikely to affect these designations, there remains a hydraulic link between the site development area and the designations via the River Shambles to the Cor River, and then subsequently to the Annaghroe Blackwater and into Lough Neagh. Therefore, as a precautionary approach, it is recommended that an Appropriate Assessment (AA) screening exercise is carried out. Should the effects of the development, either during the construction or operational phase, not be screened out, then a Natura Impact Statement (NIS) may be required to inform any future Appropriate Assessments.

Augmented by national records, site walkovers and habitat mapping, the results indicate that other than bat species there were no protected species identified within the site or surrounding area. As the site development proposals include the demolition of buildings, the removal of vegetation and felling of old trees, then this report recommends that further bat activity surveys are required in terms of identifying potential for bat roosts, and to assess the presence of bat species within the site.

No other mammal activity was noted other than rabbit and fox activity.

No freshwater fish were observed along the River Shambles corridor at either Old Cross Square, upstream at the junction where the Ulster Canal Greenway commences, or at Castle Road bridge section. In terms of national records, no records were noted for protected fish species, and the current water quality status is considered to be poor. Therefore, no further surveys have been recommended for freshwater fish.

A number of Invasive Species were identified within the site development area, therefore it is recommended to carry out an Invasive Species Survey, and to develop an Invasive Species Management Plan as part of the supporting works for the Ecological Impact Assessment process. Ideally invasive species surveys should be carried out during the plant growing season (April to September) when species and extent of growth is more readily identifiable.

It is recommended that all clearance of vegetation or tree felling work is undertaken outside of the breeding bird season (generally considered to extend between March and August inclusive). As an informative, if works are to be undertaken during the bird breeding season, then breeding bird checks may be necessary prior to commencement of works where clearing or removal of trees and vegetation cover is required. If nests are identified and deemed to be active, a temporary pause of works, or a watching brief to identify species and monitor for any signs of disturbance during works, may be required. This may also require a buffer area to be implemented during the breeding season. Some bird species are afforded extra protection under the Irish Wildlife Act, and dependent on their sensitivity to construction activities, may require an increased buffer area to minimise disturbance during this period. All works involving breeding bird and nesting checks should be carried out under the supervision of a qualified ecologist or ornithologist.

In summary, on the basis of the desk study and site walkover investigations carried out to date, it is recommended to undertake the following assessments in order to further inform an Ecological Impact Assessment, and to develop suitable mitigation measures as required:

- Invasive Species Survey
- Invasive Species Management Plan
- Bat Roost & Activity Surveys (where trees, buildings or linear structures are to be removed)
- Appropriate Assessment Screening & Natura Impact Statement (NIS), as required

1.0 INTRODUCTION

1.1 Report Brief & Scope

Layde Consulting was appointed by Carlin Planning Ltd to undertake a Preliminary Ecological Appraisal (PEA) for a proposed Regeneration Scheme within Monaghan town, extending to lands at the rear of Dublin Street North. This report summarises the key findings in relation to local ecology, and protected national and international designations within close proximity to the site.

This report was carried out in accordance with the CIEEM Guidelines for Preliminary Ecological Appraisal¹, whereby a Preliminary Ecological Appraisal (PEA) is the rapid assessment of any ecological features present, or potentially present, within a site and its surrounding area, and involves desk study assessments in conjunction with site walkovers and habitat mappings. The key objectives of the Preliminary Ecological Appraisal (herein termed 'PEA') were to identify:

- the presence of any legally protected habitats listed within European legislation;
- the presence of habitats which might offer suitable niche requirements for legally protected fauna; and,
- any requirement of further ecological survey work to inform the development process or subsequent options appraisal process of the upgrade scheme.

This appraisal is based on a review of the development proposals provided by the client, desk study data (third party information) and a survey of the development area including adjoining lands where applicable.

1.2 Limitations

Weather conditions throughout the survey walkover periods were generally dry and mild, which is generally considered to be suitable for carrying out field work and site walkovers. It should be noted that some of the proposed development area had restricted access due to private land/residential ownership. However, these restrictions were not deemed to have a significant impact on the survey results. It was not the purpose of the survey to carry out a targeted search for the presence of protected species or their resting places, and it should be noted that species identification and activity is subject to change both in terms of spatial and temporal extents.

The results of the survey were designed to inform the requirement for further species specific surveys and should be treated as such. It should be noted that this PEA does not include specific details relating to the positions of Invasive Species, as an Invasive Species Survey and Management Plan has been undertaken separately to this report.

This report pertains to the desk-based assessments, site walkovers and review of published information in relation to the site only. Recommendations included within this report are the professional opinion of an experienced ecologist, based on their personal interpretation of legislation and planning policy, and are therefore the view of Layde Consulting and have been prepared in accordance with the British Standard for Biodiversity Code of Practice for Planning and Development (BS42020:2013) and the relevant CIEEM Guidelines.

¹ CIEEM "Guidelines for Ecological Appraisal, Second Edition", (2017)

1.3 Site Overview & Development Proposals

The proposed development area (herein termed the 'site') incorporates lands to the rear of Dublin Street North, Monaghan (see Figure 1), and comprises of a mix of urbanised areas, external residential amenity areas, commercial land, and derelict lands comprising of scrub and treelines along St. Davnet's Row and the Old Infirmary. Under the development proposals it is intended to regenerate the site by demolishing the existing buildings within the site, and constructing a new public access road, car parking and event space, and also enabling the provision of future development plots for commercial and residential uses. As a result, the development proposals also include the removal of vegetation and ground cover, as required, and grading cut/fill works. The proposals also include all necessary infrastructure provisions such as drainage and utilities, paving, surfacing and landscaping.

Figure 1- Proposed development area, lands to the rear of Dublin Street North

1.4 Statement of Authority

This report has been prepared by John Laverty, Principal Environmental Scientist at Layde Consulting who holds a BSc (Hons) degree in Environmental Science and is a Full member of the Institute of Environmental Sciences. John has over 20 years of experience in the preparation of ecological impact assessments, and has worked with a range of private and PLC companies and on an extensive number of development and infrastructure projects.

2.0 LEGISLATION AND POLICY CONTEXT

2.1 Habitats Directive

The Habitats Directive (Council Directive 92/43/EEC on the Conservation of Natural Habitats and of Wild Flora and Fauna) forms the main legislative body for the protection and conservation of biodiversity within the European Union (EU), and lists habitats and species that must be protected within Special Areas of Conservation (SAC) on Annexes I and II respectively. The Habitats Directive additionally identifies plant and animal species on Annex IV which are subject to strict protection anywhere they occur. The habitats directive has subsequently been transposed and disaggregated to national regulations, including the following regulations and Statutory Instruments for Ireland:

2.2 Wildlife Acts

The Wildlife Acts 1976 to 2021 is a collective citation for the following:

- Wildlife Act 1976 (no. 39 of 1976)
- Wildlife (Amendment) Act 2000 (no. 38 of 2000)
- Wildlife (Amendment) Act 2010 (no. 19 of 2010)
- Wildlife (Amendment) Act 2012 (no. 29 of 2012)
- Heritage Act 2018 (no. 15 of 2018), Part 3
- Planning, Heritage and Broadcasting (Amendment) Act 2021 (no.11 of 2021), Chapter 3

2.3 Birds and Natural Habitats Regulations

The European Communities Council Directive on the Conservation of Wild Birds 79/409/EEC was transposed to the Birds and Natural Habitats Regulations 2011 (S. I. No. 477 of 2011), and amended under the 2011 Regulations to:

- S.I. No. 290 of 2013
- S.I. No. 499 of 2013
- S.I. No. 355 of 2015
- Planning, Heritage and Broadcasting (Amendment) Act 2021 (no.11 of 2021), Chapter 4
- S.I. No. 293 of 2021

2.4 Designation of European Sites

A key measure to protect nature and biodiversity in the EU is the establishment of a network of nature protection areas under the Habitats Directive and the Birds Directive. The areas designated under these two pieces of legislation are known collectively as Natura 2000 sites, also referred to as European Sites under national legislation.

The 2011 Regulations seek to conserve species of wild birds and require the designation of a network of habitats for birds, based on scientific criteria, and are known as Special Protected Areas (SPAs). The 2011 Regulations, also require the designation of Special Areas of Conservation (SACs) for the protection of certain habitats and species of plants and animals (other than birds).

2.5 Other Protections & Designations

EU countries must also establish systems of strict protection for animal and plant species which are particularly threatened, and which are listed in Annex IV of the Habitats Directive. Article 12 and 13 of the Habitats Directive relates to the establishment of a system of strict protection for certain animal and plant species, while Article 16 provides for derogations from these provisions under limited circumstances. Article 12, 13 and 16 of the Habitats Directive are transposed into Irish law by Regulation 51, 52 and 54 of the Birds and Habitats Regulations of 2011, respectively. The animal species listed in Annex IV, which occur in Ireland, are:

- otters
- all bat species
- all cetaceans (whales and dolphins)
- the natterjack toad
- the leatherback Turtle
- kemp's ridley turtle
- loggerhead turtle
- hawksbill turtle
- the Kerry slug

The plant species listed in Annex IV, which occur in Ireland, are:

- Slender Naiad
- Yellow Marsh Saxifrage
- Killarney Fern

Each of these species is strictly protected in Ireland and a person who deliberately captures, kills or disturbs a specimen in the wild, or who damages or destroys a breeding site or resting place of such an animal, is guilty of an offence. As an Annex IV species may be found throughout the country, the protection of these species is not restricted in geographical terms and is not necessarily associated with areas subject to a specific nature designation. Under the Wildlife Act (1976) and Wildlife (Amendment) Acts (2000 & 2010), the following species are also afforded local protection:

- Red squirrel
- Badger
- Natterjack Toad
- Deer species
- Hedgehog
- Pine marten
- Hare species

2.6 Species Specific Legislation

2.6.1 Bats (all species)

All bats and their roosting sites are legally protected under the EU Habitats Directive as transposed by the Habitats Regulations. With the exception of Lesser Horseshoe bat (*Rhinolophus hipposideros*), which is an Annex II species, the remainder are classified as Annex IV species. They are also protected under the Wildlife Act (as amended). Across Europe, bats are further protected under the Convention on the Conservation of European Wildlife and Natural Habitats (Bern Convention 1982), which, in relation to bats, exists to conserve all species and their habitats. Article 12 and 13 of the Habitats Directive relates to the establishment of a system of strict protection for certain animal and plant species, while Article 16 provides for derogations from these provisions under limited circumstances.

Article 12, 13 and 16 of the Habitats Directive are transposed into Irish law by Regulation 51, 52 and 54 of the Birds and Habitats Regulations of 2011, respectively. All bats are strictly protected in Ireland and a person who deliberately captures, kills or disturbs a specimen in the wild, or who damages or destroys a breeding site or resting place of such an animal, is guilty of an offence. As an Annex IV species may be found throughout the country, the protection of these species is not restricted in geographical terms and is not necessarily associated with areas subject to a specific nature designation. Under the Regulations it is an offence:

- Deliberately to capture, injure or kill a wild animal of a European protected species;
- Deliberately to disturb such an animal while it is occupying a structure or place which it uses for shelter or protection;
- Deliberately disturb such an animal in such a way as to be likely to;
 - affect the local distribution or abundance of the species to which it belongs;
 - impair its ability to survive, breed or reproduce, or rear or care for its young; or
 - impair its ability to hibernate or migrate;
- Deliberately obstruct access to a breeding site or resting place of such an animal; or
- To damage or destroy a breeding site or resting place of such an animal.

It is notable that there is no provision within the legislation to issue licences to kill bats for the purpose of development.

2.6.2 Breeding Nesting Birds

All wild birds are protected, particularly during the bird breeding season while nesting under the Irish Wildlife Act 1976 (as amended), the EU Habitats Directive of the Bern convention via the European Communities (Birds and Natural Habitats Regulations 2011 (S. I. No. 477 of 2011). It is an offence to intentionally or recklessly:

- kill, injure or take any wild bird; or
- take, damage or destroy the nest of any wild bird while that nest is in use or being built; or
- at any other time take, damage or destroy the nest of any wild bird included in Schedule A1; or
- take or destroy an egg of any wild bird; or
- disturb any wild bird while it is building a nest or is in, on or near a nest containing eggs or young; or
- disturb dependent young of such a bird.

Additionally, any person who knowingly causes or permits to be done an act which is made unlawful by any of these provisions shall also be guilty of an offence.

2.6.3 Wild Birds

Most bird species return to the same general nesting location each year and build a new nest. However, some species return to the same nest sites year after year, re-using old nests. For these species it is an offence to damage or destroy their nests at any time of the year, even when they are not in use. All wild birds are also subject to conservation measures under the Birds Directive (2009/147/EC). This requires European Member States to take conservation measures to maintain populations of all naturally occurring wild birds.

Additionally, some bird species, which are particularly rare or vulnerable, are listed on Annex I of the Directive. These species are subject to special conservation measures and have additional legal protection as features of designated sites, such as Special Protection Areas (SPAs). Local and national biodiversity action plans consider priority species within the local area of conservation concern.

2.6.4 Red Squirrel (Sciurus vulgaris)

Red squirrels (Sciurus vulgaris) and their dreys are protected under the Irish Wildlife Act 1976 (as amended) and are listed under Annex III of the Bern Convention for Conservation of European Wildlife and Natural Habitats. Under this It is an offence to:

- intentionally or recklessly kill, injure or take
- intentionally or recklessly: damage or destroy, or obstruct access to, any structure or place which red squirrels use for shelter or protection;
- damage or destroy anything which conceals or protects any such structure; disturb a red squirrel while it is occupying a structure or place which it uses for shelter or protection.

There is no provision within the legislation to issue licences to kill red squirrels for the purpose of development.

2.6.5 Badgers (Meles meles)

Badgers (*Meles meles*) are legally protected under the Irish Wildlife Act 1976 (as amended) and Annex IV of the EU Habitats Directive Appendix III of the Bern convention as a species in need of protection. Under the Order it is an offence to:

- intentionally or recklessly kill, injure or take a badger; or
- intentionally or recklessly damage or destroy, or obstruct access to, any structure or place (normally a sett) that badgers use for shelter or protection; or
- intentionally or recklessly damage or destroy anything which conceals or protects any such structure; or
- intentionally or recklessly disturb a badger while it is occupying a structure or place which it uses for shelter or protection.

In addition, any person who knowingly causes or permits to be done an act which is made unlawful by any of these provisions shall also be guilty of an offence. Again, there is no provision within the legislation to issue licences to kill badgers for the purpose of development.

2.6.6 Otter (Lutra lutra)

Otters (*Lutra lutra*) are protected under the Irish Wildlife Act 1976 (as amended) and are listed on Annex II and Annex IV of the EU Habitats Directive. Under the Habitats Regulations it is an offence:

- Deliberately capture, injure or kill a wild animal of a European protected species;
- Deliberately to disturb such an animal while it is occupying a structure or place which it uses for shelter or protection;
- Deliberately to disturb such an animal in such a way as to be likely to;
 - affect the local distribution or abundance of the species to which it belongs;
 - impair its ability to survive, breed or reproduce, or rear or care for its young; or
 - impair its ability to hibernate or migrate:
- Deliberately to obstruct access to a breeding site or resting place of such an animal; or
- To damage or destroy a breeding site or resting place of such an animal.

There is no provision within the legislation to issue licences to kill otters for the purpose of development.

2.6.7 Natterjack Toad

Natterjack Toad are protected in Ireland under Ounder Appendix II of the Convention on the Conservation of European Wildlife and Natural Habitats (The Bern Convention). Among the list of offences in relation to the Order, it is an offence regarding:

- The deliberate capture and keeping and deliberate killing of protected species;
- the deliberate damage to or destruction of breeding or resting sites;
- the deliberate disturbance of wild fauna, particularly during the period of breeding, rearing and hibernation, insofar as disturbance would be significant in relation to the objectives of the Convention;
- the deliberate destruction or taking of eggs from the wild or keeping these eggs;

In addition, any person who knowingly causes or permits to be done an act which is made unlawful by any of these provisions shall also be guilty of an offence. There is no provision within the legislation to issue licences to kill a Natterjack Toad for the purpose of development.

2.6.8 Common or viviparous lizard (Zootoca vivipara)

Common lizards (*Zootoca vivipara*) are afforded protection under Appendix III of the Convention on the Conservation of European Wildlife and Natural Habitats (The Bern Convention). Under the Order it is an offence to:

- intentionally or recklessly kill, injure or take a lizard, or
- intentionally or recklessly damage or destroy, or obstruct access to, any structure or place that lizards use for shelter or protection.

2.6.9 Lepidoptera

The marsh fritillary butterfly (*Euphydryas aurinia*) is a protected species listed on Annex II and Annex IV of the EU Habitats Directive, whereby it is an offence It is an offence to:

- intentionally or recklessly kill, injure or take the marsh fritillary butterfly; or
- intentionally or recklessly damage or destroy, or obstruct access to, any structure or place that the marsh fritillary uses for shelter or protection

Cryptic Wood white Butterfly is also listed on Schedules 5 of the 1982 Wildlife and Countryside Act.

2.6.10 Flora

All wild plants are given some measure of protection in the Republic of Ireland, The current list of plant species protected by Section 21 of the Wildlife Act, 1976 is set out in the Flora (Protection) Order, 2015. The order has the effect that, unless you have a licence, you may not:

- intentionally pick, uproot or destroy any wild plants listed in the schedule, or even collect their flowers and seeds;
- sell these plants or their seeds if taken from the wild;
- uproot any wild plants intentionally, except on your own land or with permission.

3.0 METHODOLOGY

3.1 Desk Based Assessment

A desk-based review of biological records was carried out based on the standard best practice methodology provided by the Chartered Institute of Ecology and Environmental Management's (CIEEM) Guidance for Preliminary Ecological Appraisal (CIEEM, 2017). The study aimed to gather information on the potential value of the site and the wider study area specifically in terms of statutory and non-statutory conservation designations, protected habitats and protected species.

Data regarding statutory and non-statutory designated sites, plus any records of protected or notable species and habitats was requested from the local ecological records centre and online resources, details of which are provided in Table 1 below. The study area extended up to 1km from the site in order to account for regional records and spatial trends, and included a review of NPWS and EPA GIS datasets, and species records from relevant working groups.

Table 1 - Summary of desk study resources and source information

Source	Detail or Link
National Parks & Wildlife Service	GIS datasets & National Records database
National Biodiversity Data Centre	Heritage Council Mapping Centre & Databases

3.2 Field Surveys & Habitat Mapping

Field survey methodologies and habitat mapping was carried out in accordance with CIEEM guidelines², and habitat identification and classification was completed in accordance with the Fossitt's Guide³ (2000). The field walkover and surveys were carried out from the 18th July – 12th September 2023, 25th January 2024, and from the 16th – 28th August 2024. Field mapping and target notes were recorded using a Trimble sub-metre GPS Catalyst receiver (60cm accuracy). The survey area was provided by the client in the form of DWG vectors and imported to GIS format. Searches comprised the following methods, along with review of collated field target notes.

Badger

Areas of suitable badger habitat such as broadleaved woodland areas, copses and scrub, were identified within the survey area as these tend to be favoured by the species (although they have also been known to occupy areas of forestry plantation etc). Any incidental field signs of badger and any indicative evidence were noted, and include:

- setts (including main, subsidiary and outlier setts);
- latrines (dung pits used as territorial markers);
- prints:
- foraging signs (snuffle holes); and,
- guard hairs snagged on wire fencing.

Any of the above signs (with the exception of foraging signs) can be taken as diagnostic evidence of the presence of badger.

Otter

All waterbodies, watercourses and minor ditches within the survey area, where access was permitted and where it was safe to do so, were assessed for their potential to support otters. Any incidental recordings of otter field signs were noted, which includes:

- resting sites (e.g. holts and couches);
- spraints;
- prints and feeding remains.

Pine Marten

Pine marten are recognised as difficult to survey for, as their scats (the most obvious field signs) are similar to those of a fox when seen in the field. As such the surveys focussed on assessing the habitat suitability. This typically includes mature woodland, including coniferous plantations, although pine marten will forage in open habitats as well. In particular, the survey searched for areas which might hold suitable potential for denning sites including hollow trees, root plates, boulder piles or rocky outcrops. Pine marten signs are described in Harris and Yalden (2008)⁴.

Red Squirrel

Any incidental recordings of red squirrel field signs were noted including:

- dreys (tree-top resting sites); and,
- feeding remains (chewed pine cones, particularly at traditional feeding stations such as on top of tree stumps).

It should be noted that it is not possible to distinguish red squirrel dreys and feeding remains from those of grey squirrels. The most reliable method of confirming the species presence is the sighting of an actual animal. Therefore, given the relatively low likelihood of seeing a red squirrel during the survey, the main aim of the survey was to identify whether squirrels (regardless of species) were likely to be present.

² CIEEM "Guidelines for Ecological Appraisal, Second Edition", (2017)

³ Julie A. Fossitt, "A Guide to habitats in Ireland", 2000, The Heritage Council

⁴ Harris, S. and Yalden, D. W. (2008). Mammals of the British Isles: Handbook. The Mammal Society.

Reptiles and Amphibians

Areas of suitable habitat for reptiles and amphibians were identified within the survey area. The habitat requirements of common lizard (*Zootoca vivipara*), are relatively broad but in general they require areas of dense vegetation such as grassland, heath, scrub and woodland edge for foraging and shelter. Reptiles also require more open, preferably south facing areas in which to bask (Gent and Gibson, 2012)⁵, and suitable refugia habitat such as wood and rock piles in which to shelter and more importantly to hibernate during the winter.

Bats (all species)

Target notes were maintained throughout the assessment area for habitats and features which would be suitable to support bat roosting, foraging and commuting places. It should be noted that this report however does not provide a specific detailed bat assessment or Preliminary Bat Roost Survey, but rather highlights areas or habitat features which should be investigated further as required.

Breeding Birds

Target notes were maintained throughout the assessment area as to the presence or suitability of habitats and features within the site which may support breeding bird species, and a record of incidental bird sightings was maintained during the site visit.

4.0 RESULTS - DESK BASED ASSESSMENT

4.1 Natura 2000 Sites & Designations

A search of the National Parks and Wildlife Serve (NPWS) GIS database was undertaken in order to identify any Natura 2000 designations, or proposed or designated Natural Heritage Areas (pNHA's & NHA's). The search criteria incorporated an area 15km radius of the site, and a summary of the findings are presented below in Table 2, with the results illustrated in Figure 2.

Table 2. Identified Natura 2000 & designations within 15km of the site.

Designation	Site ID	Site Name	Setback Distance
pNHA	001612	Wright's Wood	1.75km west
pNHA	001602	Drumreaske Lough	3km northwest
pNHA	001784	Rosefield Lake And Woodland	3.9km west
pNHA	001611	Ulster Canal (Aghalisk)	3.6km west
pNHA	001783	Corcreeghy Lake And Woodland	5km southwest
pNHA	001785	Mullaghmore Lake (South)	6.4km northwest
pNHA	001837	Mullaglassan Lough	9.9km west
pNHA	001838	Kilcorran Lough	11km west
pNHA	001839	Kilcorran Lough	12.1km west
pNHA	001840	Lislannan Bog	12.8km west
pNHA	001781	Lisarilly Bog	11.2km southwest
pNHA	001606	Rafinny Lough	9km southwest
pNHA	000001	Dromore Lakes	13.4km south
pNHA	001268	Cordoo Lough	10.9km southeast
pNHA	001666	Tassan Lough	13.9km southeast
pNHA	000559	Glaslough Lake	8.2km northeast
pNHA	000562	Monmurray Grassland	11.5km northeast
pNHA	000558	Emy Lough	9.7km north
SPA	004167	Slieve Beagh SPA	10.4km northwest
NHA	001603	Eshbrack Bog NHA	12.6km northwest
SAC	UK0016622	Slieve Beagh SAC	15.3km Northwest
SAC	UK0016621	Magheraveely Marl Loughs SAC	12.3km West

 $^{^{5}}$ Gent, T. and Gibson, S. (2012) "Herpetofauna Workers' Manual", Joint Nature Conservation Committee

Designation Site ID Site Name Setback Distance SPA UK9020302 Slieve Beagh-Mullaghfad-Lisnaskea SPA 14.8km Northwest

The search results indicated that the site is not located within any Natura 2000 designation. The closest Natura 2000 designation was identified to be more than 10km away from the site (Slieve Beagh SPA), although the site development proposals do not have any source-pathway-receptor linkages to the SPA designation, and are unlikely to support any qualifying interests in terms of breeding bird species.

In addition to Natura 2000 sites, a review was undertaken of the NPWS databases for other protected designations within close proximity to the site, in particular Proposed Natural Heritage Areas. Proposed NHAs (pNHAs) were published on a non-statutory basis in 1995 although have not since been statutorily proposed or designated. These sites are of significance for wildlife and habitats. Some of the pNHAs are very small, such as a roosting place for rare bats, while others are much larger, such as a woodland or lake for example. Although not currently designated under statutory basis, it should be noted that designations for pNHAs may proceed on a phased basis over the coming years. As such, each identified pNHAs located within close proximity to the site has also been taken into consideration within this report.

The closest protected designation to the site is Wright's Wood pNHA which is located approximately 1.75km to the west, however there were no identified feasible source-pathway-receptor linkages between the site proposals and any of the pNHA designations.

It is noted that the Lough Neagh & Lough Beg RAMSAR site is located approximately 33km northeast of the site, and Lough Neagh & Lough Beg SPA is located approximately 39km NE. Although highly unlikely to affect these designations, there remains a hydraulic link between the site development area and the designations via the River Shambles to the Cor River, and then subsequently to the Annaghroe Blackwater and into Lough Neagh.

4.2 **National Biodiversity Data Centre**

A search was undertaken of the Heritage Council Mapping Centre and National Biodiversity Data Centre, inclusive of the site area and immediate surrounding lands (1km square grid, map tile H6733 & H6734). The detailed results are presented in Appendix 1, and summarised below:

Two records were identified for Smoot Newt (Lissotriton vulgaris), however these records were last updated in 2010, with no records being recorded of Smooth Newt since. In terms of mammals, one record was noted for Eastern Grey Squirrel (Sciurus carolinensis) in 2007, and a single record for West European Hedgehog (Erinaceus europaeus) in 2023. Red Squirrel (Sciurus vulgaris) was recorded within lands to the north in 2018, and an otter (road kill survey) was last recorded in 2008. 42No. bird species were recorded through the 1km square grid, along with insect species, which due to the numerous records are referred to Appendix 1 for more detailed review. 13No. flowering plant species were noted, which includes Japanese Knotweed (Fallopia japonica) recorded in 2019. The search results indicated that the site and wider area may be suitable for the following bat species:

Moderate suitability for:

Low to moderate suitability for:

Pipistrellus pygmaeu Plecotus auritus

Pipistrellus nathusi Myotis mystacinus

Pipistrellus pipistrellus

Nyctalus leisleri

Myotis daubentonii Myotis nattereri

5.0 HABITAT SURVEYS

A series of site walkovers and habitat surveys were carried out from the 18th July – 12th September 2023, 25th January 2024, and from the 16th – 28th August 2024, in order to identify evidence of notable species or habitat features, and to provide an overview of the habitat mosaics present within the site area. Habitat mapping was also augmented by the National Biodiversity Data Centre records and habitat mapping feature using the Fossitts guide for mosaics. The Habitat classification map (full overview) is presented in Figure 3, and a detailed description of the habitat classifications are discussed in the following subsections.

5.1 WS1 Scrub

Lands to the rear of properties along Dublin Street North and throughout the northwest area of the site comprise of portions of derelict or fallow ground which have subsequently colonised as scrub. Large areas of scrub were also identified within the eastern part of the site (Figure 4). Identified species included dense stands of Bramble (*Rubus fruticosus* agg.), Nettle (*Urtica dioica*), willow (*Salix* spp. to include *Salix cinerea* & caprea), creeping thistle (*Cirsium*), Hawthorn (*Crataegus monogyna*), Meadow Buttercup (*Ranunculus acris*), Ash (*Fraxinus* spp.), Rosebay willowherb (*Epilobium angustifolium*), Dog rose (*Rosa canina*), Red clover (*Trifolium pratense*), Bush vetch (*Vicia sepium*), Elder (*Sambucus nigra*), Common plantain (*Plantago major*), Grass-like starwort (*Stellaria graminea*), Bittersweet Nightshades (*Solanum dulcamara*), Sycamore (*Acer pseudoplatanus*), Hedge bindweed (*Calystegia sepium*), Fringed willowherb (*Epilobium ciliatum*), Bitter dock (*Rumex obtusifolius*), White clover (*Trifolium repens*), Woodland Figwort (*Scrophularia nodosa*), creeping buttercup (*Ranunculus repens*), Cleavers (*Galium aparine*), Cow parsley (*Anthriscus sylvestris*), Ragwort (*Jacobaea vulgaris*), and large stands of Butterfly-bush (*Buddleja davidii*). Stands of Japanese Knowtweed were also recorded within areas identified as scrub (as disused in later chapters of this report).

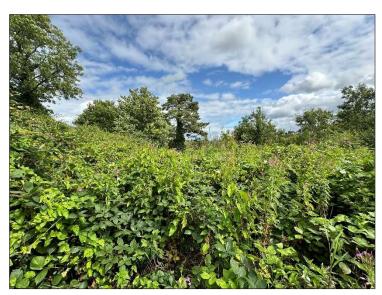


Figure 4. Dense scrub (WS1) within eastern parts of the site.

Partial tree clearing has been undertaken within lands to the rear of property No.56b & No.59d along the northwestern site boundary, however this area has since recolonised primarily with Bramble (*Rubus fruticosus* agg.), Nettle (*Urtica dioica*), Butterfly-bush (*Buddleja davidii*), ivy spp. and small saplings (Figure 5).

Figure 5. Colonising scrub within partially cleared lands adjacent to No.59d

5.2 ED2 Spoil & Bare Ground

Spoil and bare ground was noted throughout the site, particularly within areas of derelict or recently cleared ground to the rear of properties along Dublin Street North, and along the extent of St. Davnet's Row bounding the north of the site. Areas of private land have also been infilled with aggregate (Figure 6) and are regularly used for car parking and access roads. Plant species were more limited in density (covering less than 50% of ground), and included Bramble (*Rubus fruticosus* agg.), Nettle (*Urtica dioica*), willowherbs (*Epilobium* spp.), Common plantain (*Plantago major*), Ragwort (*Jacobaea vulgaris*), Dandelion (*Taraxacum* spp.) and Red clover (*Trifolium pratense*).

Figure 6. Example of spoil & bare ground to rear of building No.43a / 42d.

5.3 ED3 Recolonising Bare Ground

Recolonising ground was recorded within isolated areas to the rear of Dublin Street North, for example lands adjacent to spoil/bare ground illustrated above in Figure 6, and also within areas worn by human activity such as pathways, areas of refuge within the mixed broadleaved woodland, and ground to the front of the pumping station compound area within the southeastern portion of

the site. Plant species were found to be similar to those found within ED2 classification, and included Bramble (*Rubus fruticosus* agg.), Nettle (*Urtica dioica*), willowherbs (*Epilobium* spp.), Common plantain (*Plantago major*), Butterfly-bush (*Buddleja davidii*), Ragwort (*Jacobaea vulgaris*), Dandelion (*Taraxacum* spp.) Red clover (*Trifolium pratense*), Pineappleweed (*Matricaria discoidea*) and creeping buttercup (Ranunculs repens).

5.4 WD1 (Mixed) Broadleaved Woodland

Mixed broadleaved woodland (Figure 7) was mapped within the southeastern portion of the site, with the mature tree canopy being retained as part of the open greenspace amenity area for the development, and also within lands to the rear of building No.38c which have been allowed to establish with ash to above 5m in height. Recorded large mature trees within the southeastern portion of the site include Ash, Beech and sycamore, with an understorey comprising of Beech, Salix spp., Elderflower (Sambucus nigra), Hawthorn (Crataegus monogyna), Cow parsley (Anthriscus sylvestris), Butterfly-bush (Buddleja davidii), white clover (Trifolium repens) and grass spp. Small areas of bare exposed ground (classified as ED2/3) were also mapped at the base of mature trees, due to regular human activities trampling the ground surface (Figure 8).

Figure 7. Mixed broadleaved woodland (WD1)

Figure 8. Woodland with exposed ground at the base due to human activity

5.5 WD2 - Mixed conifer and broadleaved woodland

Although not inside the site area, lands comprising of mixed conifer spp. and broadleaved woodland were recorded along the eastern boundary adjacent to the public footpath (Figure 9). Species include Sitka Spruce (*Picea sitchensis*) and Larch (*Larix* spp.) along the western part of the classified area, and ash and sycamore to the east. The conifer trees are mature in nature and heavily overgrown with common ivy (*Hedera helix*).

Figure 9. Mixed conifer / broadleaved woodland east of the site.

5.6 WD5 Scattered Trees & Parklands

A small portion of land within the southeast of the site comprises of species poor amenity grassland with occasional scattered trees, which form a prominent visual feature. In particular, two large ash trees are present (Figures 10 and 11), although the tree canopies are not linked. The trees are of poor health, and under the planning proposals it is intended to fell these to accommodate the development.

Figure 10. One of two prominent tree features within grass amenity area

Figure 11. Second Ash tree within scattered trees & parkland habitat

5.7 WS3 Ornamental non-native Shrub

Ornamental non-native shrubs were recorded throughout the site, and included large dense stands of Common snowberry (Symphoricarpos albus) mixed with Bramble (Rubus fruticosus agg.), Rosebay willowherb (Epilobium angustifolium), Hedge bindweed (Calystegia sepium), and Bush vetch (Vicia sepium). Stands of Common snowberry (likely a remnant of the Old Infirmary gardens) have been cut through as a pathway linking the WS3 habitat to the mixed broadleaved woodland area (see Figure 12).

Species also included Wall Cotoneaster (*Cotoneaster horizontalis*), Boxleaf Honeysuckle (*Lonicera ligustrina var.*), Beech (*Fagus* spp.), Kenilworth ivy (*Cymbalaria muralis*), Common osier (*Salix viminalis*), Meadow pea (*Lathyrus pratensis*), Goose grey / Silverweed (*Argentina anserina*), St. John's wort (*Hypericum androsaemum*), Elder (*Sambucus nigra*), Cherry Laurel (*Prunus laurocerasus*) and Silver Birch (*Betula pendula*). Species within lands to the rear of building No.34a comprised of creeping buttercup (Ranunculs repens), Hedge bindweed (*Calystegia sepium*), Hawthorn (*Crataegus monogyna*), Bitter dock (*Rumex obtusifolius*), Euonymus (*Euonymus japonicus*), Leyland cypress (*Cupressus leylandii*), Herb Robert (*Geranium robertianum*), Variegated Holy (*Ilex Aquifolium*), creeping thistle (*Cirsium arvense*), Boxleaf Honeysuckle (*Lonicera ligustrina var.*) and hornbeam (*Carpinus Betulaceae*).

Figure 12. Dense stands of snowberry, bindweed, and Boxleaf Honeysuckle

5.8 WL2 Treelines

A treeline of semi-mature ash (*Fraxinus excelsior*) and Willow (*Salix* spp.) greater than 5m in height was mapped on the eastern side of an pumping station compound area, and adjacent to the boundary wall of property No.32c. The treeline is effectively limited to a small belt of trees and overgrown scrub along the separating boundary wall structure. In addition, treeline comprising predominantly of Ash & Willow spp. was recorded to the north of the site (adjacent to building No.46d) on the adjacent side of the rear laneway.

Figure 13. Treeline adjacent to the site comprising of Ash & Willow spp.

5.9 BC1 Stone Walls and Other Stonework

Stone walls were recorded throughout the survey area, typically bounding lands to the rear of properties along Dublin Street North, and separating these properties from the eastern portion of the site which was recorded as scrub, woodland and scattered trees / parkland. Many of the stone wall structures were overgrown with Maidenhair spleenwort (*Alsplenium trichomanes*), common ivy (*Hedera helix*), Dog rose (*Rosa canina*) and grass spp. (*Aira & Catapodium* spp.), however in most cases the stone wall structures were clearly visible (see example in Figure 14). Therefore, many of the structures have been mapped as BC1 rather than WL1 (hedgerows) or WS1 (scrub).

Figure 14. Example of exposed stone wall structure (rear of No.46d)

5.10 GA2 - Amenity Grassland (improved)

Areas defined as improved amenity grassland were mapped to the rear of buildings 34a / 33c (Figure 15), 37g, and along the path border within the eastern portion of the site (Figure 16). Species composition for this habitat consisted primarily of perennial couch weed grass (*Elymus repens*), perennial ryegrass (*Lolium perenne*), annual Meadow grass (*Poa annua*), and also included clover (*Trifolium pratense & repens*), Dandelion (*Taraxacum* spp.), Bitter dock (*Rumex obtusifolius*), Willowherb spp., etc.

Figure 15. Amenity grassland to rear of No.34a & 33c.

Figure 16. Amenity grassland along public footpath edge.

5.11 GA1 – Improved Agricultural Grassland

Although not within the site boundary, lands to the north of the site comprise of a large agricultural field which has been used for recent silage production, i.e. improved agricultural grassland (GA1). Species noted within the field and along the unmanaged boundary (Figure 17) included Ryegrasses (Lolium spp.), perennial couch weed grass (Elymus repens), annual Meadow grass (Poa annua), and also included stinging nettle (Urtica dioica), clover (Trifolium pratense & repens), Dandelion (Taraxacum spp.), Bitter dock (Rumex obtusifolius), Willowherb spp, and dead nettle (Lamium maculatum).

Figure 17. Improved agricultural grassland (right) of laneway.

5.12 BL3 Artificial Surfaces

The urbanised nature of a significant portion of the site inherently includes artificial surfaces, incorporating Dublin Street, Old Cross Square, The Diamond, and car parking areas. Artificial surfaces within the site also include the pedestrian pathway leading from Old Cross Square, building surfaces, access roads (a mix of concrete and asphalt etc), and garden patios and yards.

6.0 FAUNA

6.1 Bats (all species)

As indicated by national records and databases, the site has moderate potential for the presence of bats, in particular woodland areas and around derelict building structures, as well as tree lines and the rear laneway area to the rear of properties. The laneway and forest areas could potentially provide suitable foraging areas, and derelict buildings or mature trees may have the potential for roost features.

During site walkovers carried out in August 2023 and 2024, bats were observed flying along the laneway at dusk, and were observed originating from the neighbouring conifer / broadleaved woodland area to the east of the site adjacent to the public footpath.

6.2 Badger

No evidence of badger activity was found within the study area, ether in the form of foraging, latrines or sett structures. Therefore, no further surveys have been recommended for badger activity within the site area or wider area.

6.3 Red Squirrel

National records indicate the presence of grey squirrel was recorded in 2007, with no recording sightings noted since. Red Squirrel was last recorded in 2018 to the north of the site. During the site walkover, no direct evidence of squirrel activity was recorded, either for red or grey squirrel, and suitable habitats are limited to the mixed conifer / broadleaved woodland area to the east of the site. As no evidence was noted during a number of site visits throughout the year, and given the limited habitat suitability within the site, then no further surveys have been recommended.

6.4 Otters

A visual inspection and site walkover was carried out to identify ofter activities within the survey area, and particularly along the river corridor of the River Shambles to the south of the site adjacent to Old Cross Square. No evidence of the presence of ofter was noted, with national records indicating the last sighting was in 2008.

6.5 Other mammals

Throughout the survey area and during the site walkover, evidence of rabbit activity was noted and confirmed from visual activity of rabbits. In addition, a fox was recorded by visual observation within the fire damaged building at No.40b, inside the remains of the building structure. No other mammal activity was noted.

6.6 Amphibians

Piles of stone and stone walls have potential for use by reptiles for basking or as refugia. Favourable undisturbed habitat for foraging reptiles and amphibians is also present within the survey area and wider environment. However, national records do not indicate any sightings of amphibians, and no sightings were confirmed during the numerous site walkovers.

6.7 Freshwater Fish

No freshwater fish were observed along the River Shambles corridor at either Old Cross Square, upstream at the junction where the Ulster Canal Greenway commences, or at Castle Road bridge section. In terms of national records, no records were noted for fish species, and current water quality status is considered to be poor.

6.8 Nesting Birds

Grassland, treelines, hedgerows and scrub, all provide breeding opportunities for a range of birds. A number of bird species were observed during the site walkover, and included magpie (*Pica pica*), Blackbird (*Turdus merula*), woodpigeon (*Columba palumbus*), Common Starling (*Sturnus vulgaris*), and Song Thrush (*Turdus philomelos*). In addition to those recorded during site walkovers, national records also indicate a range of 42No. bird species within 1km of the site. It is also noted that the woodland habitats recorded within the survey area may also offer potential for breeding birds.

6.9 Invasive Species

A number of invasive species were noted during site walkovers and habitat mapping, including the following:

- Japanese Knotweed (Fallopia japonica) considered to be a high impact invasive species, stands of Japanese Knotweed were noted on lands to the rear of building No.40b, and also on the northern side of the laneway near building No.54f (target notes #12 & #17);
- Wall Cotoneaster (Cotoneaster horizontalis) a medium impact invasive species, Wall
 Cotoneaster was recorded at several places adjacent to the fenced pumping station
 compound area, within the eastern portion of the site (target note #4);
- Himalayan honeysuckle (Leycesteria Formosa) a medium impact invasive species, Himalayan honeysuckle was recorded at two positions within the site. The first position was located adjacent to the public footpath (target note #23) and the second adjacent to the woodland area (target note #10);
- Cherry laurel (*Prunus laurocerasus*) A high impact invasive species, Cherry laurel was recorded within lands to the rear of building No.42d (target note #15);

Buddleia (Buddleja davidii) - a medium impact invasive species, Buddleia was noted throughout numerous positions within the site, forming small individual stands to larger grouped stands.

7.0 CONCLUSIONS AND RECOMMENDATIONS

Layde Consulting was appointed by Carlin Planning Ltd to undertake a Preliminary Ecological Appraisal (PEA) for a proposed Regeneration Scheme within Monaghan town, extending to lands at the rear of Dublin Street North. This report summarises the key findings in relation to local ecology, and protected national and international designations within close proximity to the site, along with further recommendations should these be required.

Designations & Protected Sites

A desk study search of the National Parks and Wildlife Serve (NPWS) GIS database was undertaken in order to identify any Natura 2000 designations, proposed or designated Natural Heritage Areas (pNHA's & NHA's). The search criteria incorporated an area 15km radius of the site, and the search results indicated that the site is not located within any Natura 2000 designation. The closest Natura 2000 designation was identified to be more than 10km away from the site (Slieve Beagh SPA), although the site development proposals do not have any source-pathway-receptor linkages to the SPA designation, and are unlikely to support any qualifying interests in terms of breeding bird species.

In addition to Natura 2000 sites, a review was undertaken of the NPWS databases for other protected designations within close proximity to the site, in particular Proposed Natural Heritage Areas. The closest protected designation to the site is Wright's Wood pNHA which is located approximately 1.75km to the west, however again there are no potentially feasible source-pathwayreceptor linkages between the site proposals and any of the pNHA designations.

It is noted that the Lough Neagh & Lough Beg RAMSAR site is located approximately 33km northeast of the site, and the Lough Neagh & Lough Beg SPA is located approximately 39km NE. Although highly unlikely to affect these designations, there remains a hydraulic link between the site development area and the designations via the River Shambles to the Cor River, and then subsequently to the Annaghroe Blackwater and into Lough Neagh. Therefore, as a precautionary approach, it is recommended that an Appropriate Assessment (AA) screening exercise is carried out. Should the effects not be screened out, then a Natura Impact Statement (NIS) may be required to inform any future Appropriate Assessment reports.

Bats

As indicated by national records and databases, the site has moderate potential for the presence of bats, in particular woodland areas and around derelict building structures, as well as tree lines along St. Davnet's Row to the rear of properties. The laneway and forest areas could potentially provide suitable foraging areas, and derelict buildings or mature trees may have the potential for roost features, as indicated during site walkovers.

Therefore, it is recommended to undertake surveys for any potential bat roost features within the site, and to carry out activity surveys for buildings which are proposed to be demolished, wherever considered necessary. In addition, surveys should be undertaken for the presence of bat roosts within any trees which are to be felled as part of the development proposals, prior to felling.

Badger

No evidence of badger activity was found within the study area, ether in the form or foraging, latrines or sett structures, and no national records exist indicating the presence of badgers within close proximity to the site. Therefore, no further surveys have been recommended for badger activity within the site area or wider landscape.

Red Squirrel

No direct or indirect evidence of squirrel activity was recorded during site visits. Given the low habitat suitability for red squirrel within the site, then no further surveys for red squirrel have been recommended.

Otter

A visual inspection and site walkover was carried out to identify the presence of otter activity within the survey area, and particularly along the Shambles River at bridge sections near the site. No evidence of otter activity was recorded during site visits, and no national records last indicate the presence of otter near to the site was in 2008. Therefore, no further surveys for the presence of otter have been recommended.

Invasive Species

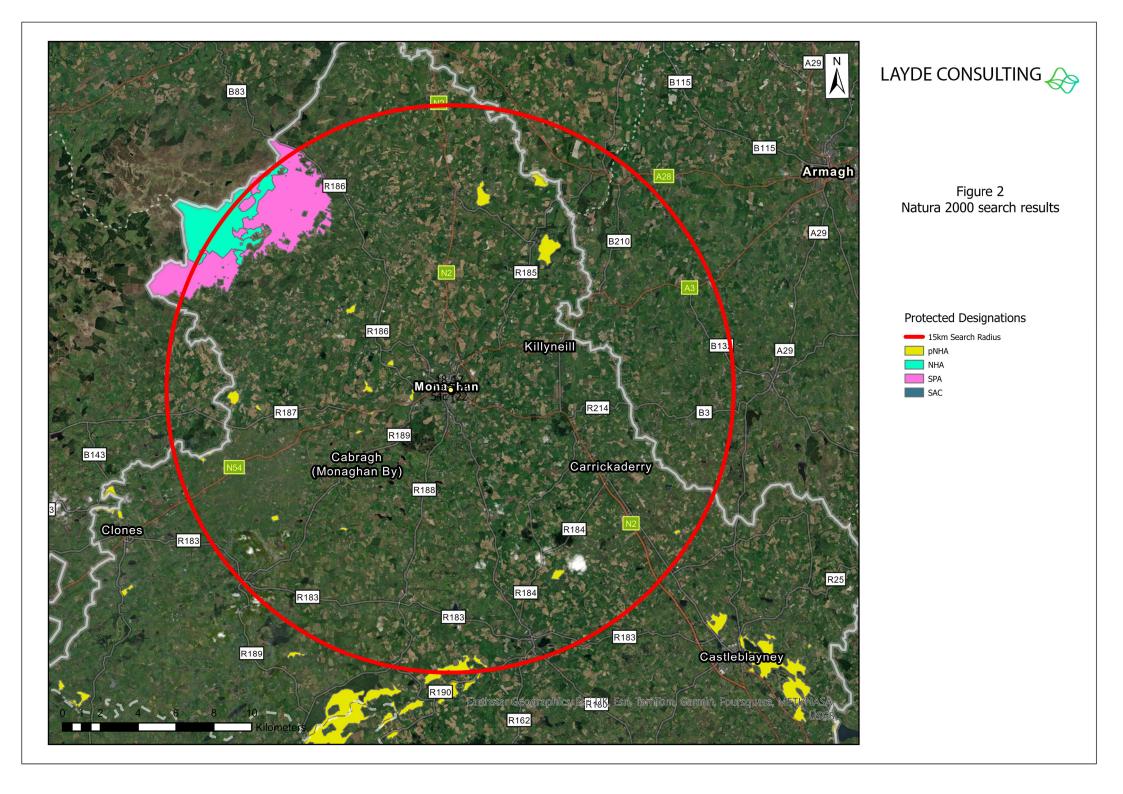
Given the presence of Invasive Species within the site development area, it is therefore recommended to carry out an Invasive Species Survey, and to develop an Invasive Species Management Plan as part of the supporting works for the Ecological Impact Assessment process. Ideally invasive species surveys should be carried out during the plant growing season (April to September) when species and extent of growth is more readily identifiable.

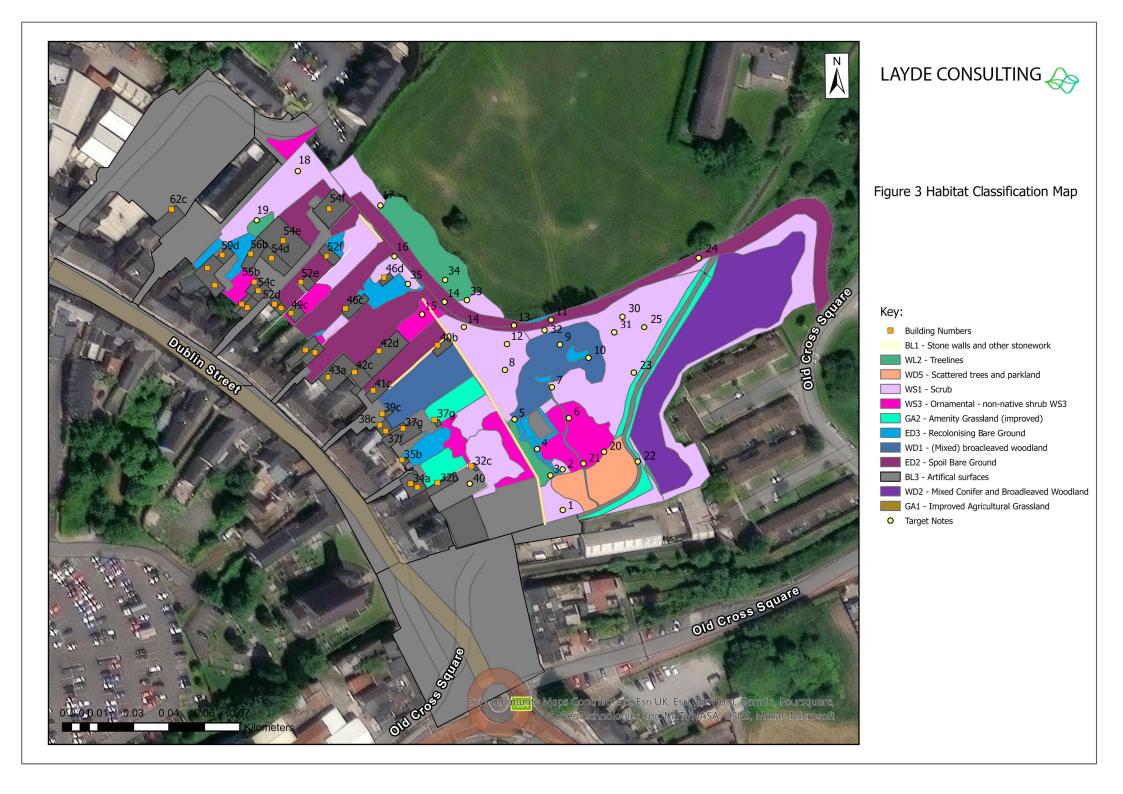
Birds

It is recommended that all clearance of vegetation or tree felling work is undertaken outside of the breeding bird season (generally considered to extend between March and August inclusive). As an informative, if works are to be undertaken during the bird breeding season, then breeding bird checks may be required prior to where works require clearing or removal of trees and vegetation cover. If nests are identified and deemed to be active, a temporary pause of works, or a watching brief to identify species and monitor for any signs of disturbance during works, may be required. This may also require a buffer area to be implemented during the breeding season. Some bird species are afforded extra protection under the Irish Wildlife Act, and dependent on their sensitivity to construction activities, may require an increased buffer area to minimise disturbance during this period. All works involving breeding bird and nesting checks should be carried out under the supervision of a qualified ecologist or ornithologist.

Freshwater Fish

No further recommendations have been made with regards to freshwater fish species.


Summary


In summary, on the basis of the desk study and site walkover investigations carried out to date, it is recommended to undertake the following additional assessments in order to inform an Ecological Impact Assessment, and to develop suitable mitigation measures as required:

- Invasive Species Survey
- Invasive Species Management Plan
- Bat Roost & Activity Surveys (where trees, buildings or linear structures are to be removed)
- Appropriate Assessment Screening & Natura Impact Statement (NIS), as required

Report Prepared By:

John Laverty BSc (Hons) MIEnvSc Principal Environmental Scientist **FIGURES**

Appendix 1

Species list for H6733

Species group	Species name	Record count	Date of last record	Title of dataset	Designation
amphibian	Smooth Newt (Lissotriton vulgaris)	2	29/06/2010	Newt Survey 2010-2014	Protected Species: Wildlife Acts
bird	Barn Swallow (Hirundo rustica)	3	29/05/2023	Birds of Ireland	Protected Species: Wildlife Acts Threatened Species: Birds of Conservation Concern Threatened Species: Birds of Conservation Concern >> Birds of Conservation Concern -
bird	Black-billed Magpie (Pica pica)	5	25/05/2023	Birds of Ireland	
bird	Blackcap (Sylvia atricapilla)	3	25/05/2023	Birds of Ireland	
bird	Black-headed Gull (Larus ridibundus)	1	14/04/2012	Birds of Ireland	Protected Species: Wildlife Acts Threatened Species: Birds of Conservation Concern Threatened Species: Birds of Conservation Concern >> Birds of Conservation Concern - Red
bird	Blue Tit (Cyanistes caeruleus)	5	04/01/2018	Birds of Ireland	
bird	Chaffinch (Fringilla coelebs)	7	25/05/2023	Birds of Ireland	
bird	Coal Tit (Periparus ater)	4	18/05/2012	Birds of Ireland	
bird	Common Blackbird (Turdus merula)	6	04/01/2018	Birds of Ireland	
bird	Common Bullfinch (Pyrrhula pyrrhula)	2	11/02/2012	Birds of Ireland	
bird	Common Chiffchaff (Phylloscopus collybita)	2	18/05/2012	Birds of Ireland	
bird	Common Coot (Fulica atra)	2	18/05/2012	Birds of Ireland	Protected Species: Wildlife Acts Protected Species: EU Birds Directive Protected Species: EU Birds Directive >> Annex II, Section I Bird Species Protected Species: EU Birds Directive >> Annex III, Section II Bird Species Threatened Species: Birds of Conservation Concern Threatened Species: Birds of Conservation Concern >> Birds of Conservation Concern - Amber
bird	Common Moorhen (Gallinula chloropus)	8	04/01/2018	Birds of Ireland	

Species group	Species name	Record count	Date of last record	Title of dataset	Designation
bird	Common Starling (Sturnus vulgaris)	7	29/05/2023	Birds of Ireland	Protected Species: Wildlife Acts Threatened Species: Birds of Conservation Concern Threatened Species: Birds of Conservation Concern >> Birds of Conservation Concern -
bird	Common Swift (Apus apus)	2	25/05/2023	Swifts of Ireland	Protected Species: Wildlife Acts Threatened Species: Birds of Conservation Concern Threatened Species: Birds of Conservation Concern >> Birds of Conservation Concern - Amber Liet
bird	Common Wood Pigeon (Columba palumbus)	4	18/05/2012	Birds of Ireland	Protected Species: Wildlife Acts Protected Species: EU Birds Directive Protected Species: EU Birds Directive >> Annex II, Section I Bird Species Protected Species: EU Birds Directive >> Annex III, Section I Bird Species
bird	Eurasian Collared Dove (Streptopelia decaocto)	5	25/05/2023	Birds of Ireland	
bird	Eurasian Jackdaw (Corvus monedula)	8	25/05/2023	Birds of Ireland	
bird	Eurasian Siskin (Carduelis spinus)	2	11/02/2012	Birds of Ireland	
bird	Eurasian Treecreeper (Certhia familiaris)	1	11/02/2012	Birds of Ireland	
bird	European Goldfinch (Carduelis carduelis)	3	14/04/2012	Birds of Ireland	
bird	European Greenfinch (Carduelis chloris)	2	11/02/2012	Birds of Ireland	
bird	European Robin (Erithacus rubecula)	8	25/05/2023	Birds of Ireland	
bird	Goldcrest (Regulus regulus)	4	25/05/2023	Birds of Ireland	
bird	Great Spotted Woodpecker (Dendrocopos major)	1	11/06/2022	Birds of Ireland	
bird	Great Tit (Parus major)	6	25/05/2023	Birds of Ireland	
bird	Grey Heron (Ardea cinerea)	1	11/02/2012	Birds of Ireland	
bird	Grey Wagtail (Motacilla cinerea)	1	10/10/2018	Birds of Ireland	
bird	Hedge Accentor (Prunella modularis)	4	18/05/2012	Birds of Ireland	
bird	Hooded Crow (Corvus cornix)	3	18/05/2012	Birds of Ireland	

Species group	Species name	Record count	Date of last record	Title of dataset	Designation
bird	House Sparrow (Passer domesticus)	5	29/05/2023	Birds of Ireland	Protected Species: Wildlife Acts Threatened Species: Birds of Conservation Concern Threatened Species: Birds of Conservation Concern >> Birds of Conservation Concern -
bird	Lesser Redpoll (Carduelis cabaret)	1	10/12/2011	Birds of Ireland	
bird	Long-tailed Tit (Aegithalos caudatus)	1	14/04/2012	Birds of Ireland	
bird	Mallard (Anas platyrhynchos)	9	25/05/2023	Birds of Ireland	Protected Species: Wildlife Acts Protected Species: EU Birds Directive Protected Species: EU Birds Directive >> Annex II, Section I Bird Species Protected Species: EU Birds Directive >> Annex III, Section I Bird Species
bird	Mistle Thrush (Turdus viscivorus)	5	25/05/2023	Birds of Ireland	
bird	Mute Swan (Cygnus olor)	1	10/12/2011	Birds of Ireland	Protected Species: Wildlife Acts Threatened Species: Birds of Conservation Concern Threatened Species: Birds of Conservation Concern >> Birds of Conservation Concern - Amber List
bird	Pied Wagtail (Motacilla alba subsp.	6	18/05/2012	Birds of Ireland	Amnar Cici
bird	Redwing (Turdus iliacus)	1	10/12/2011	Birds of Ireland	
bird	Rock Pigeon (Columba livia)	1	04/01/2018	Birds of Ireland	Protected Species: Wildlife Acts Protected Species: EU Birds Directive Protected Species: EU Birds Directive >> Annex II. Section I Bird Species
bird	Rook (Corvus frugilegus)	7	06/01/2023	Birds of Ireland	The section of Duty streets
bird	Song Thrush (Turdus philomelos)	5	25/05/2023	Birds of Ireland	
bird	Willow Warbler (Phylloscopus trochilus)	3	25/05/2023	Birds of Ireland	
bird	Winter Wren (Troglodytes troglodytes)	4	18/05/2012	Birds of Ireland	
Flatworm (Turbellaria)		1	29/10/2012	New Zealand Flatworm (Arthurdendyus triangulatus) Database	Invasive Species: Invasive Species Invasive Species: Invasive Species >> High Impact Invasive Species

Species group	Species name	Record count	Date of last record	Title of dataset	Designation
flowering plant	Common Nettle (Urtica dioica)	1	27/05/2023	Vascular plants: Online Atlas of	
				Vascular Plants 2012 Onwards	
flowering plant	Daisy (Bellis perennis)	1	27/05/2023	Vascular plants: Online Atlas of	
				Vascular Plants 2012 Onwards	
flowering plant	Elder (Sambucus nigra)	1	27/05/2023	Vascular plants: Online Atlas of	
				Vascular Plants 2012 Onwards	
flowering plant	Guelder-rose (Viburnum opulus)	1	27/05/2023	Vascular plants: Online Atlas of	
				Vascular Plants 2012 Onwards	
flowering plant	Herb-Robert (Geranium robertianum)	1	27/05/2023	Vascular plants: Online Atlas of	
				Vascular Plants 2012 Onwards	
flowering plant	Ivy (Hedera helix)	1	27/05/2023	Vascular plants: Online Atlas of	
				Vascular Plants 2012 Onwards	
flowering plant	Japanese Knotweed (Fallopia japonica)	2	10/10/2018	Vascular plants: Online Atlas of	Invasive Species: Invasive
				Vascular Plants 2012 Onwards	Species Invasive Species:
					Invasive Species >> High
					Impact Invasive Species
					Invasive Species: Invasive
					Species >> Regulation S.I. 477
					(Ireland)
flowering plant	Lime (Tilia platyphyllos x cordata = $T. x$	1	27/05/2023	Vascular plants: Online Atlas of	
	europaea)			Vascular Plants 2012 Onwards	
flowering plant	Meadow Buttercup (Ranunculus acris)	1	27/05/2023	Vascular plants: Online Atlas of	
				Vascular Plants 2012 Onwards	
flowering plant	Red Clover (Trifolium pratense)	1	27/05/2023	Vascular plants: Online Atlas of	
				Vascular Plants 2012 Onwards	
flowering plant	Silverweed (Potentilla anserina)	1	27/05/2023	Vascular plants: Online Atlas of	
				Vascular Plants 2012 Onwards	
flowering plant	Taraxacum aggregate	2	27/05/2023	Vascular plants: Online Atlas of	
				Vascular Plants 2012 Onwards	
flowering plant	Water-plantain (Alisma plantago-aquatica)	1	27/05/2023	Vascular plants: Online Atlas of	
				Vascular Plants 2012 Onwards	
harvestman (Opiliones)		1	02/10/1995	Harvestmen (Opiliones) of Ireland	
harvestman (Opiliones)		1	02/10/1995	Harvestmen (Opiliones) of Ireland	
harvestman (Opiliones)	-	1	02/10/1995	Harvestmen (Opiliones) of Ireland	
	Nemastoma bimaculatum	1	02/10/1995	Harvestmen (Opiliones) of Ireland	
harvestman (Opiliones)		1	02/10/1995	Harvestmen (Opiliones) of Ireland	
	Paroligolophus agrestis	1	02/10/1995	Harvestmen (Opiliones) of Ireland	
insect - beetle	7-spot Ladybird (Coccinella	1	29/05/2023	Ladybirds of Ireland	
(Coleoptera)	septempunctata)				
insect - butterfly	Small Tortoiseshell (Aglais urticae)	1	05/09/2023	Butterflies of Ireland post 2021	

Species group	Species name	Record count	Date of last record	Title of dataset	Designation
insect - butterfly	Speckled Wood (Pararge aegeria)	1	10/10/2018	Butterflies of Ireland pre-2022	
insect - hymenopteran	Common Carder Bee (Bombus	2	20/07/2023	Bees of Ireland	
	(Thoracombus) pascuorum)				
insect - moth	Common Grass-veneer (Agriphila tristella)	1	12/08/1984	Moths Ireland	
insect - moth	Crinan Ear (Amphipoea crinanensis)	1	31/08/1911	Moths Ireland	
insect - moth	Straw Grass-veneer (Agriphila straminella)	1	10/08/1984	Moths Ireland	
millipede	Common Flat-backed Millipede	1	02/10/1995	Millipedes of Ireland	
	(Polydesmus angustus)				
millipede	Eyed Flat-backed Millipede (Nanogona	1	02/10/1995	Millipedes of Ireland	
	polydesmoides)				
millipede	Ophyiulus pilosus	1	02/10/1995	Millipedes of Ireland	
millipede	White-legged Snake Millipede	1	02/10/1995	Millipedes of Ireland	
	(Tachypodoiulus niger)				
terrestrial mammal	Eastern Grey Squirrel (Sciurus	1	31/12/2007	The Irish Squirrel Survey 2007	Invasive Species: Invasive
	carolinensis)				Species Invasive Species:
					Invasive Species >> High
					Impact Invasive Species
					Invasive Species: Invasive
					Species >> EU Regulation No.
					1143/2014 Invasive Species:
					Invasive Species >>
					Dogulation C I 477 (Iroland)
terrestrial mammal	West European Hedgehog (Erinaceus	1	23/03/2023	Hedgehogs of Ireland	Protected Species: Wildlife Acts
	europaeus)				

Species list for H6734

Grid H6734

Species group	Species name	Record count	Date last record	Title of dataset	Designation
bird	Barn Swallow (Hirundo rustica)	1	14/04/2012	Birds of Ireland	Protected Species: Wildlife Acts Threatened Species: Birds of Conservation Concern Threatened Species: Birds of Conservation Concern >> Birds of Conservation Concern -
bird	Common Bullfinch (Pyrrhula pyrrhula)	1	14/04/2012	Birds of Ireland	
bird	Common Buzzard (Buteo buteo)	1	18/05/2012	Birds of Ireland	
bird	Common Coot (Fulica atra)	1	06/01/2023	Birds of Ireland	Protected Species: Wildlife Acts Protected Species: EU Birds Directive Protected Species: EU Birds Directive >> Annex II, Section I Bird Species Protected Species: EU Birds Directive >> Annex III, Section II Bird Species Threatened Species: Birds of Conservation Concern Threatened Species: Birds of Conservation Concern >> Birds of Conservation Concern ->
bird	Common Moorhen (Gallinula chloropus)	1	06/01/2023	Birds of Ireland	
bird	Common Swift (Apus apus)	1	29/05/2023	Swifts of Ireland	Protected Species: Wildlife Acts Threatened Species: Birds of Conservation Concern Threatened Species: Birds of Conservation Concern >> Birds of Conservation Concern -
bird	Eurasian Jackdaw (Corvus monedula)	3	06/01/2023	Birds of Ireland	AMNOFILET
bird	European Greenfinch (Carduelis chloris)	1	14/04/2012	Birds of Ireland	
bird	Pied Wagtail (Motacilla alba subsp.	1	04/08/2017	Birds of Ireland	
bird	Rock Pigeon (Columba livia)	1	04/08/2017	Birds of Ireland	Protected Species: Wildlife Acts Protected Species: EU Birds Directive Protected Species: EU Birds Directive >> Annex II. Section I Bird

Grid H6734

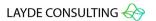
Species group	Species name	Record count	Date last record	Title of dataset	Designation
oird	Rook (Corvus frugilegus)	1	04/08/2017	Birds of Ireland	
bird	Willow Warbler (Phylloscopus trochilus)	1	08/04/2023	Birds of Ireland	
flowering plant	Bluebell (Hyacinthoides non-scripta)	1	27/05/2023	Vascular plants: Online Atlas of	
				Vascular Plants 2012 Onwards	
flowering plant	Japanese Knotweed (Fallopia japonica)	1	12/06/2019	Vascular plants: Online Atlas of Vascular Plants 2012 Onwards	Invasive Species: Invasive Species Invasive Species: Invasive Species >> High Impact Invasive Species Invasive Species: Invasive Species >> Regulation S.I.
flowering plant	Lesser Celandine (Ranunculus ficaria)	1	04/04/2017	Vascular plants: Online Atlas of	
				Vascular Plants 2012 Onwards	
flowering plant	Primrose (Primula vulgaris)	1	26/04/2018	Vascular plants: Online Atlas of	
				Vascular Plants 2012 Onwards	
insect - butterfly	Peacock (Inachis io)	1	24/08/2019	Butterflies of Ireland pre-2022	
insect - hymenopteran	Bombus (Bombus) terrestris	1	04/04/2017	Bees of Ireland	
insect - moth	Angle Shades (Phlogophora meticulosa)	1	16/07/2023	Moths Ireland	
insect - moth	Buff Footman (Eilema depressa)	1	16/07/2023	Moths Ireland	
insect - moth	Burnished Brass (Diachrysia chrysitis)	1	16/07/2023	Moths Ireland	
insect - moth	Common Carpet (Epirrhoe alternata)	1	16/07/2023	Moths Ireland	
insect - moth	Dark Arches (Apamea monoglypha)	1	16/07/2023	Moths Ireland	
insect - moth	Death's-head Hawk-moth (Acherontia atropos)	1	23/10/2013	Moths Ireland	
insect - moth	Dotted Clay (Xestia baja)	1	16/07/2023	Moths Ireland	
insect - moth	Double Dart (Graphiphora augur)	1	16/07/2023	Moths Ireland	
insect - moth	Double-square Spot (Xestia triangulum)	1	16/07/2023	Moths Ireland	
insect - moth	Dun-bar (Cosmia trapezina)	1	16/07/2023	Moths Ireland	
insect - moth	Flame Shoulder (Ochropleura plecta)	1	16/07/2023	Moths Ireland	
insect - moth	Four-spotted Footman (Lithosia quadra)	1	16/07/2023	Moths Ireland	
insect - moth	Heart & Dart (Agrotis exclamationis)	2	16/07/2023	Moths Ireland	
insect - moth	Large Yellow Underwing (Noctua pronuba)	1	16/07/2023	Moths Ireland	
insect - moth	Light Arches (Apamea lithoxylaea)	1	16/07/2023	Moths Ireland	
insect - moth	Mesapamea secalis agg.	1	16/07/2023	Moths Ireland	
insect - moth	Old Lady (Mormo maura)	1	16/07/2023	Moths Ireland	
insect - moth	Rush Wainscot (Archanara algae)	1	16/07/2023	Moths Ireland	
insect - moth	Rustic (Hoplodrina blanda)	1	16/07/2023	Moths Ireland	
insect - moth	Silver Y (Autographa gamma)	1	16/07/2023	Moths Ireland	

Grid H6734

Species group	Species name	Record count	Date last record	Title of dataset	Designation
insect - moth	Smoky Wainscot (Mythimna impura)	1	16/07/2023	Moths Ireland	
nsect - moth	Snout (Hypena proboscidalis)	1	16/07/2023	Moths Ireland	
insect - moth	Spectacle (Abrostola tripartita)	1	16/07/2023	Moths Ireland	
insect - true fly	Eristalis arbustorum	1	24/09/1971	Hoverflies (Syrphidae) of Ireland	
insect - true fly	Eristalis tenax	1	25/09/1971	Hoverflies (Syrphidae) of Ireland	
insect - true fly	Helophilus hybridus	1	24/09/1971	Hoverflies (Syrphidae) of Ireland	
insect - true fly	Helophilus pendulus	1	24/09/1971	Hoverflies (Syrphidae) of Ireland	
insect - true fly	Neoascia podagrica	1	24/09/1971	Hoverflies (Syrphidae) of Ireland	
insect - true fly	Platycheirus albimanus	1	25/09/1971	Hoverflies (Syrphidae) of Ireland	
insect - true fly	Platycheirus granditarsus	1	25/09/1971	Hoverflies (Syrphidae) of Ireland	
insect - true fly	Syrphus vitripennis	1	24/09/1971	Hoverflies (Syrphidae) of Ireland	
terrestrial mammal	Common Pipistrelle (Pipistrellus pipistrellus sensu stricto)	1	20/06/2012	National Bat Database of Ireland	
terrestrial mammal	Eastern Grey Squirrel (Sciurus carolinensis)	1	31/12/1981	Mammal Recording Scheme 1970- 1985 (An Foras Forbartha)	Invasive Species: Invasive Species Invasive Species: Invasive Species >> High Impact Invasive Species Invasive Species: Invasive Species >> EU Regulation No. 1143/2014 Invasive Species Invasive Species >> Engagistrian S. L. 477 (Ireland)
terrestrial mammal	Eurasian Red Squirrel (Sciurus vulgaris)	1	05/10/2018	Mammals of Ireland 2016-2025	Protected Species: Wildlife
terrestrial mammal	European Otter (Lutra lutra)	1	10/08/2008	Road Kill Survey	Protected Species: EU Habitats Directive Protected Species: EU Habitats Directive >> Annex II Protected Species: EU Habitats Directive >> Annex IV Protected Species: Wildlife Acts
terrestrial mammal	Lesser Noctule (Nyctalus leisleri)	2	20/06/2012	National Bat Database of Ireland	Protected Species: EU Habitats Directive Protected Species: EU Habitats Directive >> Annex IV Protected Species: Wildlife Acts

Species group	Species name	Record count	Date last record	Title of dataset	Designation
terrestrial mammal	Soprano Pipistrelle (Pipistrellus pygmaeus)	1	20/06/2012	National Bat Database of Ireland	Protected Species: EU Habitats
					Directive Protected Species:
					EU Habitats Directive >>
					Annex IV Protected Species:
					Wildlife Acts

LAYDE CONSULTING


Invasive Species Survey

Proposed Regeneration Scheme, Dublin Street North, Monaghan

Client: Carlin Planning Ltd

Project Reference: P676-2

Issue Date: September 2024

Table of Contents

EXECU	ITIVE SUMMARY	I
1.0	INTRODUCTION	1
1.1	Invasive Alien Species	1
	Limitations	2
	Site Overview & Development Proposals Statement of Authority	2 3
2.0	METHODOLOGY	3
2.1	Desk Based Assessment	3
2.2	Field Surveys & Mapping	3
3.0	RESULTS OF IAS SURVEY	4
3.1	Japanese Knotweed (Fallopia japonica)	5
	Himalayan honeysuckle (Leycesteria Formosa)	6
	Cherry laurel (<i>Prunus laurocerasus</i>) Buddleia (<i>Buddleja davidii</i>)	7
	Wall Cotoneaster (Cotoneaster horizontalis)	9
3.6	Sycamore (Acer pseudoplatanus)	9
4.0	CONCLUSIONS AND RECOMMENDATIONS	9
5.0	REFERENCES	10
_	S 1 - Proposed development area, lands to the rear of Dublin Street North 2 - Invasive Species Survey Map	
APPENI	DICES	
	lix 1 – List of Invasive Species	
	lix 2 – National Biodiversity Data Centre search results	
Photog	raphs	
Photog	raph 1 – Japanese Knotweed (target note 12)	
Photog	raph 2 – Japanese Knotweed (target note 14)	
_	raph 3 – Japanese Knotweed (target note 17)	
	raph 4 – Himalayan honeysuckle (target note 23) next to footpath	
_	raph 5 – Cherry laurel (target note 35) to rear of No.46d	
_	raph 6 – Mature Buddleia (target note 1) at pedestrian entrance	
_	raph 7 – Buddleia (target note 41 & 42) within derelict building 47a	
Photog	raph 8 – Buddleia (target note 21) within scrub land	

EXECUTIVE SUMMARY

Layde Consulting was appointed by Carlin Planning Ltd to undertake an Invasive Alien Species Survey for a proposed Regeneration Scheme within Monaghan town, extending to lands at the rear of Dublin Street North. This report presents the findings of the IAS survey, and outlines a number of recommendations which are aimed to reduce the spread of impact of IAS, and with respect to the planning proposals and various phases of the development.

In summary, the following Invasive Alien Species and non-native species were identified within or next to the site boundary:

- Japanese Knotweed (Fallopia japonica)
- o Himalayan honeysuckle (Leycesteria Formosa)
- o Buddleia (Buddleja davidii)
- o Cherry laurel (Prunus laurocerasus)
- Sycamore (Acer pseudoplatanus)

Japanese Knotweed is the only species identified within the site that is regulated within either the third schedule of S.I.477/2011 or the European Union Regulation (No. 1143/2014), however all of the identified species are considered to be medium or high impact risk non-native species.

Therefore, it is recommended that an Invasive Species Management Plan (ISMP) should be developed for the site which will need to outline specific details regarding the management of biosecurity during the demolition and construction phases. The ISMP should also detail mitigation or removal strategies for each of the IAS's, along with any pre-demolition / construction requirements. The ISMP should be treated as a 'live' document throughout all phases of the development, and updated accordingly, as required.

The findings outlined within this report are considered to be applicable for up to one year from the survey period. Should site works be postponed for more than one year beyond the survey period, then a re-survey for IAS's should be undertaken.

1.0 INTRODUCTION

Layde Consulting was appointed by Carlin Planning Ltd to undertake an Invasive Alien Species Survey (herein referred to as 'IAS survey') for a proposed Regeneration Scheme within Monaghan town, extending to lands at the rear of Dublin Street North. This report presents the findings of the IAS survey, and outlines a number of recommendations which are aimed to reduce the spread of impact of IAS, and with respect to the planning proposals and various phases of the development.

1.1 Invasive Alien Species

The Convention on Biological Diversity defines invasive alien species (IAS) as "a species that is established outside of its natural past or present distribution, whose introduction and/or spread threaten biological diversity". Therefore, this IAS survey was undertaken in order to identify and map any non-native invasive plant species listed within Part 1 of the Third Schedule of the European Communities (Birds and Natural Habitats) Regulations 2011 (S.I. No. 477 of 2011) and Amendment 2015 (S.I. No. 355/2015).

The European Union Regulation (No. 1143/2014) on Invasive Alien Species (IAS) lists 88 species whose potential adverse impacts are such that concerted action across Member States is required. Member States are required to provide for early detection and eradication of these species and must manage those species already widespread within their jurisdiction. The EU recently updated the list of invasive alien species of Union concern, including Chilean rhubarb (*Gunnera tinctoria*), Indian/Himalayan balsam (*Impatiens glandulifera*) and Giant hogweed (*Heracleum mantegazzianum*).

Hybrid knotweed species which have been recorded in Ireland are also covered by Part 1 of the Third Schedule of the European Communities (Birds and Natural Habitats) Regulations, 2011 (S.I. No. 477 of 2011) and Amendment 2015 (S.I. No. 355/2015).

Section 49 and 50 of Part 6 of the European Communities (Birds and Natural Habitats) Regulations, 2011 (S.I. No. 477 of 2011) outlines the legal context for the prohibition of the introduction and dispersal of certain plant and animal species. Specifically, Section 49, paragraph 2 states that any person without the required licence "who plants, disperses, allows or causes to disperse, spreads or otherwise causes to grow" any plant species listed in Part 1 of the Third Schedule within the State shall be guilty of an offence.

Furthermore, under Section 50 paragraph 1, a person without the required licence "shall be guilty of an offence if he or she has in his or her possession for sale, or for the purposes of breeding, reproduction or propagation, or offers or exposes for sale, transportation, distribution, introduction or release" of any plant species listed in Part 1 of the Third Schedule or anything from which "a plant referred to in Part 1 of the Third Schedule can be reproduced or propagated or "a vector material listed in Part 3 of the Third Schedule". This vector material is defined as "soil or spoil taken from places infested with Japanese knotweed (Fallopia japonica), Giant knotweed (Fallopia sachalinensis) or their hybrid Bohemian knotweed (Fallopia x bohemica)".

Species listed under the Third Schedule list of the European Communities (Birds and Natural Habitats) Regulations 2011 [S.I.477/2011] are presented in Appendix 1 of this report.

In addition to the above, flowering plants regarded as Medium and High Impact Invasive Species as listed within the National Biodiversity Data Centre were also identified during site walkovers, and are included within this IAS survey report.

1.2 Limitations

As with many aspects of ecological habitat mapping and identification exercises, surveying of Invasive Alien Species (IAS's) are often subject to a number of limitations. In this case, as the site is not currently owned by the applicant and comprises of multiple landowners, then site access was limited to areas where permission could be granted. While every attempt was made to access all portions of land, in some instances access was specifically denied, or in some cases could not be granted as the relevant landowners could not be contacted prior to or during site visits.

Surveys were carried out throughout the year, with surveys also being carried out during optimal times of plant growth (i.e. May – September). However, portions of land could not be accessed due to excessive scrub and vegetation growth. It should be noted that IAS's are subject to spatial and temporal changes both in terms of spatial extent and presence, therefore species identified within this report may alter with time. As such, the findings outlined within this report are considered applicable for up to one year from the survey period. Should site works be postponed for more than one year beyond the survey period, then a re-survey for IAS's should be undertaken.

Field target notes were obtained using a Trimble sub-metre GPS Catalyst receiver (60cm accuracy), however, where tree or satellite coverage was impeded, then GPS accuracy extended up to 5m.

1.3 Site Overview & Development Proposals

The proposed development area (herein termed the 'site') incorporates lands to the rear of Dublin Street North, Monaghan (see Figure 1), and comprises of a mix of urbanised areas, external residential amenity areas, commercial land, and derelict lands comprising of scrub and treelines along St. Davnet's Row and the Old Infirmary. Under the development proposals it is intended to regenerate the site by demolishing the existing buildings within the site, and constructing a new public access road, car parking and event space, and also enabling the provision of future development plots for commercial and residential uses. As a result, the development proposals also include the removal of vegetation and ground cover, as required, and grading cut/fill works. The proposals also include all necessary infrastructure provisions such as drainage and utilities, paving, surfacing and landscaping.

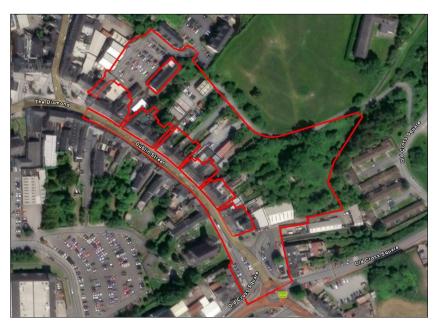


Figure 1- Proposed development area, lands to the rear of Dublin Street North

1.4 Statement of Authority

This report has been prepared by John Laverty, Principal Environmental Scientist at Layde Consulting who holds a BSc (Hons) degree in Environmental Science and is a Full member of the Institute of Environmental Sciences. John has over 20 years of experience in the preparation of ecological impact assessments, and has worked with a range of private and PLC companies and on an extensive number of development and infrastructure projects.

2.0 METHODOLOGY

2.1 Desk Based Assessment

A desk-based review of national records and datasets was carried out in order to determine if any IAS's have been observed or recorded within the vicinity of the site. In particular, a review was undertaken for records held by the National Biodiversity Data Centre (NBDC) online database (last accessed 29/08/2024), and for grids H6733 & H6734. The detailed results of the search are provided in Appendix 2 of this report, and the records indicate that Japanese Knotweed was recorded on 10/10/2018 within the vicinity of the site (grid H6733) and on the 12/06/2019 in lands to the north of the site (within 1km^2). No other flowering plant IAS's were recorded.

2.2 Field Surveys & Mapping

Field surveys and site walkovers were carried out from the 18th July – 12th September 2023, 25th January 2024, and from the 16th – 28th August 2024. Field mapping and target notes were recorded using a Trimble sub-metre GPS Catalyst receiver (60cm accuracy), accepting the limitations outlined in Section 1.2. Site walkovers were undertaken for all lands, wherever access could be granted.

The site comprises of private lands to the rear of properties along Dublin Street North, and are subdivided into small plots of land ownership, most of which are bounded by stone or block wall structures. To the north of the site, St. Davnet's Row and the Old Infirmary links the entrance at Old Cross Square and the GAA playing fields to the access road between Dublin Street and building No.54f, traversing along the rear of properties along Dublin Street North. Lands within the southeastern portion of the site (i.e. the Old Infirmary) comprise of scrub, amenity and public lands bounded to the east by means of a public pedestrian pathway leading from Old Cross Square.

Site walkovers were undertaken at various times throughout the year in order to ascertain the presence of early and late flowering IAS's. Although access was limited within areas of dense scrub, particularly over portions of ground within the southeast of the site, visual inspection could be undertaken for most of the area. In addition to restrictions of access to some of the rear properties of Dublin Street, as previously discussed, surveys were unable to be carried out for small areas of land due to anti-social behaviour (i.e. lands around buildings No.40b).

The results of the field survey walkovers are discussed further within the following sections, however the IAS survey location map and target notes are presented in Figure 2 and should be referred to in relation to the findings.

3.0 RESULTS OF IAS SURVEY

As IAS's were identified throughout a significant portion of the site area, then each of the IAS's are discussed individually by species, rather than discussing the findings in terms of habitat mosaics or locations by feature. For ease of reference, each of the identified IAS's have been assigned a target note and impact classification, and are summarised below in Table 1. Both Table 1 and Figure 2 should be considered together when reviewing the findings. Any identified species listed within EU IAS Regulation [1143/2014] and the Third Schedule list of the European Communities (Birds and Natural Habitats) Regulations 2011 [S.I.477/2011] are summarised below. In addition, any flowering plants regarded as Medium or High impact non-native species as listed within the National Biodiversity Data Centre have also been included within the summary table.

Table 1. Summary of identified IAS's within the site.

Target	Species		n (ITM)	Impact	Regulations
ID				Level	
1	Buddleia	667461	833669	Medium	
2	Buddleia	667461	833686	Medium	No specified regulation
4	Buddleia	667451	833695	Medium	Follow Guidance on
	Wall Contoneaster			Medium	Management Principles
5	Buddleia	667441	833707	Medium	
9	Buddleia	667460	833739	Medium	
10	Himalayan Honeysuckle	667472	833733	Medium	
	Buddleia			Medium	
11	Buddleia	667456	833749	Medium	
12	Japanese Knotweed	667438	833739	High	Controlled under
14	Japanese Knotweed	667420	833746	High	S.I.477/2011
					3 rd Schedule Part 1
15	Buddleia	667402	833752	Medium	No specified regulation
	Cherry Laurel			High	Follow Guidance on
16	Buddleia	667390	833776	Medium	Management Principles
17	Japanese Knotweed	667384	833798	High	Controlled under
					S.I.477/2011
47	D. dallaria	007000	000704	NA - di	3 rd Schedule Part 1
17	Buddleia	667332	833791	Medium	No appoified regulation
19 21	Buddleia	667470 667491	833688	Medium	No specified regulation Follow Guidance on
23	Buddleia Himalayan Honeysuckle		833727	Medium Medium	Management Principles
23	Buddleia	667519	833776	Medium	wanagement i incipies
24	Buddleia	667496	833746	Medium	
25	Buddleia	667486	833751	Medium	
30	Buddleia	667483	833744	Medium	
31	Buddleia	667454	833745	Medium	
32	Buddleia	667421	833758	Medium	
33	Buddleia	667412	833766	Medium	-
34	Buddleia	667396	833765	Medium	-
35	Buddleia	667402	833752	Medium	-
36	Buddleia	667455	833702	Medium	
37	Buddleia	667411	833757	Medium	
40	Buddleia	667422	833680	Medium	
41	Buddleia	667355	833742	Medium	
42	Buddleia	667347	833732	Medium	
44	Buddleia	667327	833762	Medium	-
45	Buddleia	667429	833688	Medium	-
-	Sycamore		locations	Medium	
	- Joanner -	1411040		1110010111	

3.1 Japanese Knotweed (Fallopia japonica)

Japanese Knotweed (*Fallopia japonica*) was identified at three locations within the site. The first stand is marked as target note 12 in Figure 2, and is located within an area of dense scrub within ~10m of St. Davnet's Row laneway corridor (photograph 1). The stand extends to approximately 2m in height and covers a ground area of approximately 6m².

Photograph 1. Japanese Knotweed (target note 12)

The second area of Japanese Knotweed (target note 14) is located approximately ~ 10 m to the rear of the fire damaged building No.40b, adjacent the treeline and boundary stone wall (photograph 2). The stand is also located within 10m of the St. Davnet's Row laneway (inside the site boundary), and extends to approximately 1.7m in height covering a ground area of approximately 4m².

Photograph 2. Japanese Knotweed (target note 14)

The third stand of Japanese Knotweed was identified at target note 17. Although this area is outside the site boundary, it is located immediately adjacent to St. Davnet's Row laneway (photograph 3) which may be used for access during the demolition and construction phases of the development, and would thus have the potential to cause biosecurity issues.

Photograph 3. Japanese Knotweed (target note 17)

Japanese Knotweed is regulated under the third schedule of S.I.477/2011, and is considered to be a high impact risk in terms of Invasive Alien Species within Ireland. Therefore, Japanese Knotweed will need to be included within an Invasive Species Management Plan (ISMP), particularly for the demolition and construction phases of the development.

3.2 Himalayan honeysuckle (Leycesteria Formosa)

Himalayan honeysuckle (*Leycesteria Formosa*) was identified at two locations within the site. The first location (photograph 4) was identified along an area of scrub adjacent to the public pedestrian footpath within the east of the site (Target note 23, adjacent to the Old Infirmary area), with growth extending to 1.5m in height and ~ 1 m² at ground level.

Photograph 4. Himalayan honeysuckle (target note 23) next to footpath

The second location of Himalayan honeysuckle was identified was at Target note 10, fringing the mixed broadleaved woodland area. Plant growth extended to approximately 1.4m in height, and covered a ground area of approximately 1m².

Although Himalayan honeysuckle is not regulated under the third schedule of S.I.477/2011, nor is it listed within the EU species of concern, however it is considered to pose a medium impact risk in terms of non-native species within Ireland. Therefore, Himalayan honeysuckle within the site will need to be included within an Invasive Species Management Plan (ISMP), again particularly for the demolition and construction phases of the development.

3.3 Cherry laurel (Prunus laurocerasus)

Cherry laurel (Prunus laurocerasus) was identified at the edge of St. Davnet's Row laneway and adjacent to the yard entrance of building No.46d (target note 35). Growth extended to ~4m in height (photograph 5) and has developed multi-stemmed growth incorporating an area of circa 2m² at ground level. Cherry laurel is not regulated under the third schedule of S.I.477/2011, nor is it listed within the EU species of concern, however it is considered to pose a high impact risk in terms of non-native species within Ireland. As such, the Cherry laurel will also need to be included within an Invasive Species Management Plan (ISMP).

Photograph 5. Cherry laurel (target note 35) to rear of No.46d

3.4 Buddleia (Buddleja davidii)

Buddleia (Buddleja davidii) has recorded in numerous locations throughout the site, as illustrated in Figure 2. Many of these locations have multiple Buddleia shrubs within ~5m of the target note position, ranging from small recently colonised shrubs to large mature examples. By way of such example, a large mature scrub was identified adjacent to the pedestrian footpath entrance at Old Cross Square (target note 1, photograph 6).

Examples of Buddleia were also identified within derelict areas such as the building remains at No.47a (target notes 41 & 42, photograph 7), and also within scrub land (target note 21, photograph 8). Buddleia is not regulated under the third schedule of S.I.477/2011, nor is it listed within the EU species of concern, however it is considered to pose a medium impact risk in terms of non-native species within Ireland. As such, Buddleia should need to be included within an Invasive Species Management Plan (ISMP).

Photograph 6. Mature Buddleia (target note 1) at pedestrian entrance

Photograph 7. Buddleia (target note 41 & 42) within derelict building 47a

Photograph 8. Buddleia (target note 21) within scrub land

3.5 Wall Cotoneaster (Cotoneaster horizontalis)

Wall cotoneaster (*Cotoneaster horizontalis*) was recorded at target note 4, to the rear of building 32c. The area comprises of dense scrub and ornamental shrubs which have likely spread from the rear amenity area of 32c, or from the original Old Infirmary gardens, although this area has also since become overgrown. Wall cotoneaster is not regulated under the third schedule of S.I.477/2011, nor is it listed within the EU species of concern, however it is considered to pose a medium impact risk in terms of non-native species within Ireland. As such, Wall cotoneaster should be included within an Invasive Species Management Plan (ISMP).

3.6 Sycamore (Acer pseudoplatanus)

Sycamore (*Acer pseudoplatanus*) was recorded at numerous positions within the site, either as semi-mature trees or saplings, such as next to the junction between St. Davnet's Row laneway and the pedestrian footpath at target note 24. Given the large number of locations, the presence of sycamore should be treated as commonly occurring. Sycamore is not regulated under the third schedule of S.I.477/2011, nor is it listed within the EU species of concern, however it is considered to pose a medium impact risk in terms of non-native species within Ireland. As such, Sycamore should need to be included within an Invasive Species Management Plan (ISMP).

4.0 CONCLUSIONS AND RECOMMENDATIONS

Layde Consulting was appointed by Carlin Planning Ltd to undertake an Invasive Alien Species Survey for a proposed Regeneration Scheme within Monaghan town, extending to lands at the rear of Dublin Street North. This report presents the findings of the IAS survey, and outlines a number of recommendations which are aimed to reduce the spread of impact of IAS, and with respect to the planning proposals and various phases of the development.

In summary, the following Invasive Alien Species and non-native species were identified within or next to the site boundary:

- o Japanese Knotweed (Fallopia japonica)
- o Himalayan honeysuckle (Leycesteria Formosa)
- o Buddleia (Buddleja davidii)
- Cherry laurel (Prunus laurocerasus)
- Sycamore (Acer pseudoplatanus)

Japanese Knotweed is the only species identified within the site that is regulated within either the third schedule of S.I.477/2011 or the European Union Regulation (No. 1143/2014), however all of the identified species are considered to be medium or high impact risk non-native species.

Therefore, it is recommended that an Invasive Species Management Plan (ISMP) should be developed for the site which will need to outline specific details regarding the management of biosecurity during the demolition and construction phases. The ISMP should also detail mitigation or removal strategies for each of the IAS's, along with any pre-demolition / construction requirements. The ISMP should be treated as a 'live' document throughout all phases of the development, and updated accordingly, as required.

The findings outlined within this report are considered to be applicable for up to one year from the survey period. Should site works be postponed for more than one year beyond the survey period, then a re-survey for IAS's should be undertaken.

5.0 REFERENCES

IFI (2010) IFI Biosecurity Protocols for Field Survey Work. Inland Fisheries Ireland. Dublin, Ireland.

INNSA (2017). Code of Practice. Managing Japanese Knotweed. Invasive Non-Native Specialists Association. Thornby, England.

Irish Water (2016a). Guidance on the Management of Japanese knotweed. Irish Water. Dublin, Ireland.

NRA (2010). Management of Noxious Weeds and Non-Native Invasive Plant Species on National Road Schemes. National Roads Authority. Dublin, Ireland.

O'Flynn, C., Kelly, J. and Lysaght, L. (2014). Ireland's invasive and non-native species – trends in introductions. National Biodiversity Data Centre Series No. 2. Ireland.

Smith, G., O'Donoghue, P., O'Hora, K., Delaney, E. (2011). Best Practice Guidance for Habitat Survey and Mapping. Heritage Council, Kilkenny, Ireland.

TII (2020). The Management of Invasive Alien Plant Species on National Roads – Standard. GE-ENV-01104. Transport Infrastructure Ireland. Dublin, Ireland.

FIGURES

Figure 2 Invasive Species Survey

Appendix 1

Non-native invasive plant species, as defined in Part 1 of the Third Schedule of the European Communities (Birds and Natural Habitats) Regulations, 2011 (S.I. No. 477 of 2011) and Amendment 2015 (S.I. No. 355/2015). Non-native species subject to restrictions under Regulations 49 and 50.

PLANTS:

Common name	Scientific name
American skunk-cabbage	Lysichiton americanus
A red alga	Grateloupia doryphora
Brazilian giant-rhubarb	Gunnera manicata
Broad-leaved rush	Juncus planifolius
Cape pondweed	Aponogeton distachyos
Cord-grasses	Spartina (all species and hybrids)
Curly waterweed	Lagarosiphon major
Dwarf eel-grass	Zostera japonica
Fanwort	Cabomba caroliniana
Floating pennywort	Hydrocotyle ranunculoides
Fringed water-lily	Nymphoides peltata
Giant hogweed	Heracleum mantegazzianum
Giant knotweed	Fallopia sachalinensis
Giant-rhubarb	Gunnera tinctoria
Giant salvinia	Salvinia molesta
Himalayan balsam	Impatiens glandulifera
Himalayan knotweed	Persicaria wallichii
Hottentot-fig	Carpobrotus edulis
Japanese knotweed	Fallopia japonica
Large-flowered waterweed	Egeria densa
Mile-a-minute weed	Persicaria perfoliata
New Zealand pigmyweed	Crassula helmsii
Parrots feather	Myriophyllum aquaticum
Rhododendron	Rhododendron ponticum
Salmonberry	Rubus spectabilis
Sea-buckthorn	Hippophae rhamnoides
Spanish bluebell	Hyacinthoides hispanica

Common name	Scientific name
Three-cornered leek	Allium triquetrum
Wakame	Undaria pinnatifida
Water chestnut	Trapa natans
Water fern	Azolla filiculoides
Water-primrose	Ludwigia (all species)
Waterweeds	Elodea (all species except Elodea canadensis)
Wireweed	Sargassum muticum

Appendix 2

Species list for H6733

Species group	Species name	Record count	Date of last record	Title of dataset	Designation
amphibian	Smooth Newt (Lissotriton vulgaris)	2	29/06/2010	Newt Survey 2010-2014	Protected Species: Wildlife Acts
bird	Barn Swallow (Hirundo rustica)	3	29/05/2023	Birds of Ireland	Protected Species: Wildlife Acts Threatened Species: Birds of Conservation Concern Threatened Species: Birds of Conservation Concern >> Birds of Conservation Concern -
bird	Black-billed Magpie (Pica pica)	5	25/05/2023	Birds of Ireland	
bird	Blackcap (Sylvia atricapilla)	3	25/05/2023	Birds of Ireland	
bird	Black-headed Gull (Larus ridibundus)	1	14/04/2012	Birds of Ireland	Protected Species: Wildlife Acts Threatened Species: Birds of Conservation Concern Threatened Species: Birds of Conservation Concern >> Birds of Conservation Concern - Red
bird	Blue Tit (Cyanistes caeruleus)	5	04/01/2018	Birds of Ireland	
bird	Chaffinch (Fringilla coelebs)	7	25/05/2023	Birds of Ireland	
bird	Coal Tit (Periparus ater)	4	18/05/2012	Birds of Ireland	
bird	Common Blackbird (Turdus merula)	6	04/01/2018	Birds of Ireland	
bird	Common Bullfinch (Pyrrhula pyrrhula)	2	11/02/2012	Birds of Ireland	
bird	Common Chiffchaff (Phylloscopus collybita)	2	18/05/2012	Birds of Ireland	
bird	Common Coot (Fulica atra)	2	18/05/2012	Birds of Ireland	Protected Species: Wildlife Acts Protected Species: EU Birds Directive Protected Species: EU Birds Directive >> Annex II, Section I Bird Species Protected Species: EU Birds Directive >> Annex III, Section II Bird Species Threatened Species: Birds of Conservation Concern Threatened Species: Birds of Conservation Concern >> Birds of Conservation Concern - Amber
bird	Common Moorhen (Gallinula chloropus)	8	04/01/2018	Birds of Ireland	

Species group	Species name	Record count	Date of last record	Title of dataset	Designation
bird	Common Starling (Sturnus vulgaris)	7	29/05/2023	Birds of Ireland	Protected Species: Wildlife Acts Threatened Species: Birds of Conservation Concern Threatened Species: Birds of Conservation Concern >> Birds of Conservation Concern -
bird	Common Swift (Apus apus)	2	25/05/2023	Swifts of Ireland	Protected Species: Wildlife Acts Threatened Species: Birds of Conservation Concern Threatened Species: Birds of Conservation Concern >> Birds of Conservation Concern - Amber Liet
bird	Common Wood Pigeon (Columba palumbus)	4	18/05/2012	Birds of Ireland	Protected Species: Wildlife Acts Protected Species: EU Birds Directive Protected Species: EU Birds Directive >> Annex II, Section I Bird Species Protected Species: EU Birds Directive >> Annex III, Section I Bird Species
bird	Eurasian Collared Dove (Streptopelia decaocto)	5	25/05/2023	Birds of Ireland	
bird	Eurasian Jackdaw (Corvus monedula)	8	25/05/2023	Birds of Ireland	
bird	Eurasian Siskin (Carduelis spinus)	2	11/02/2012	Birds of Ireland	
bird	Eurasian Treecreeper (Certhia familiaris)	1	11/02/2012	Birds of Ireland	
bird	European Goldfinch (Carduelis carduelis)	3	14/04/2012	Birds of Ireland	
bird	European Greenfinch (Carduelis chloris)	2	11/02/2012	Birds of Ireland	
bird	European Robin (Erithacus rubecula)	8	25/05/2023	Birds of Ireland	
bird	Goldcrest (Regulus regulus)	4	25/05/2023	Birds of Ireland	
bird	Great Spotted Woodpecker (Dendrocopos major)	1	11/06/2022	Birds of Ireland	
bird	Great Tit (Parus major)	6	25/05/2023	Birds of Ireland	
bird	Grey Heron (Ardea cinerea)	1	11/02/2012	Birds of Ireland	
bird	Grey Wagtail (Motacilla cinerea)	1	10/10/2018	Birds of Ireland	
bird	Hedge Accentor (Prunella modularis)	4	18/05/2012	Birds of Ireland	
bird	Hooded Crow (Corvus cornix)	3	18/05/2012	Birds of Ireland	

Species group	Species name	Record count	Date of last record	Title of dataset	Designation
bird	House Sparrow (Passer domesticus)	5	29/05/2023	Birds of Ireland	Protected Species: Wildlife Acts Threatened Species: Birds of Conservation Concern Threatened Species: Birds of Conservation Concern >> Birds of Conservation Concern -
bird	Lesser Redpoll (Carduelis cabaret)	1	10/12/2011	Birds of Ireland	
bird	Long-tailed Tit (Aegithalos caudatus)	1	14/04/2012	Birds of Ireland	
bird	Mallard (Anas platyrhynchos)	9	25/05/2023	Birds of Ireland	Protected Species: Wildlife Acts Protected Species: EU Birds Directive Protected Species: EU Birds Directive >> Annex II, Section I Bird Species Protected Species: EU Birds Directive >> Annex III, Section I Bird Species
bird	Mistle Thrush (Turdus viscivorus)	5	25/05/2023	Birds of Ireland	
bird	Mute Swan (Cygnus olor)	1	10/12/2011	Birds of Ireland	Protected Species: Wildlife Acts Threatened Species: Birds of Conservation Concern Threatened Species: Birds of Conservation Concern >> Birds of Conservation Concern - Amber List
bird	Pied Wagtail (Motacilla alba subsp.	6	18/05/2012	Birds of Ireland	XIIII.Zir I IE.
bird	Redwing (Turdus iliacus)	1	10/12/2011	Birds of Ireland	
bird	Rock Pigeon (Columba livia)	1	04/01/2018	Birds of Ireland	Protected Species: Wildlife Acts Protected Species: EU Birds Directive Protected Species: EU Birds Directive >> Annex II. Section I Bird Species
bird	Rook (Corvus frugilegus)	7	06/01/2023	Birds of Ireland	The section is fall to the section of the section o
bird	Song Thrush (Turdus philomelos)	5	25/05/2023	Birds of Ireland	
bird	Willow Warbler (Phylloscopus trochilus)	3	25/05/2023	Birds of Ireland	
bird	Winter Wren (Troglodytes troglodytes)	4	18/05/2012	Birds of Ireland	
Flatworm (Turbellaria)		1	29/10/2012	New Zealand Flatworm (Arthurdendyus triangulatus) Database	Invasive Species: Invasive Species Invasive Species: Invasive Species >> High Impact Invasive Species

Species group	Species name	Record count	Date of last record	Title of dataset	Designation
flowering plant	Common Nettle (Urtica dioica)	1	27/05/2023	Vascular plants: Online Atlas of	
				Vascular Plants 2012 Onwards	
flowering plant	Daisy (Bellis perennis)	1	27/05/2023	Vascular plants: Online Atlas of	
				Vascular Plants 2012 Onwards	
flowering plant	Elder (Sambucus nigra)	1	27/05/2023	Vascular plants: Online Atlas of	
				Vascular Plants 2012 Onwards	
flowering plant	Guelder-rose (Viburnum opulus)	1	27/05/2023	Vascular plants: Online Atlas of	
				Vascular Plants 2012 Onwards	
flowering plant	Herb-Robert (Geranium robertianum)	1	27/05/2023	Vascular plants: Online Atlas of	
				Vascular Plants 2012 Onwards	
flowering plant	Ivy (Hedera helix)	1	27/05/2023	Vascular plants: Online Atlas of	
				Vascular Plants 2012 Onwards	
flowering plant	Japanese Knotweed (Fallopia japonica)	2	10/10/2018	Vascular plants: Online Atlas of	Invasive Species: Invasive
				Vascular Plants 2012 Onwards	Species Invasive Species:
					Invasive Species >> High
					Impact Invasive Species
					Invasive Species: Invasive
					Species >> Regulation S.I. 477
					(Ireland)
flowering plant	Lime (Tilia platyphyllos x cordata = $T. x$	1	27/05/2023	Vascular plants: Online Atlas of	
	europaea)			Vascular Plants 2012 Onwards	
flowering plant	Meadow Buttercup (Ranunculus acris)	1	27/05/2023	Vascular plants: Online Atlas of	
				Vascular Plants 2012 Onwards	
flowering plant	Red Clover (Trifolium pratense)	1	27/05/2023	Vascular plants: Online Atlas of	
				Vascular Plants 2012 Onwards	
flowering plant	Silverweed (Potentilla anserina)	1	27/05/2023	Vascular plants: Online Atlas of	
				Vascular Plants 2012 Onwards	
flowering plant	Taraxacum aggregate	2	27/05/2023	Vascular plants: Online Atlas of	
				Vascular Plants 2012 Onwards	
flowering plant	Water-plantain (Alisma plantago-aquatica)	1	27/05/2023	Vascular plants: Online Atlas of	
				Vascular Plants 2012 Onwards	
harvestman (Opiliones)		1	02/10/1995	Harvestmen (Opiliones) of Ireland	
harvestman (Opiliones)		1	02/10/1995	Harvestmen (Opiliones) of Ireland	
harvestman (Opiliones)	-	1	02/10/1995	Harvestmen (Opiliones) of Ireland	
	Nemastoma bimaculatum	1	02/10/1995	Harvestmen (Opiliones) of Ireland	
harvestman (Opiliones)		1	02/10/1995	Harvestmen (Opiliones) of Ireland	
	Paroligolophus agrestis	1	02/10/1995	Harvestmen (Opiliones) of Ireland	
insect - beetle	7-spot Ladybird (Coccinella	1	29/05/2023	Ladybirds of Ireland	
(Coleoptera)	septempunctata)				
insect - butterfly	Small Tortoiseshell (Aglais urticae)	1	05/09/2023	Butterflies of Ireland post 2021	

Species group	Species name	Record count	Date of last record	Title of dataset	Designation
insect - butterfly	Speckled Wood (Pararge aegeria)	1	10/10/2018	Butterflies of Ireland pre-2022	
insect - hymenopteran	Common Carder Bee (Bombus	2	20/07/2023	Bees of Ireland	
	(Thoracombus) pascuorum)				
insect - moth	Common Grass-veneer (Agriphila tristella)	1	12/08/1984	Moths Ireland	
insect - moth	Crinan Ear (Amphipoea crinanensis)	1	31/08/1911	Moths Ireland	
insect - moth	Straw Grass-veneer (Agriphila straminella)	1	10/08/1984	Moths Ireland	
millipede	Common Flat-backed Millipede	1	02/10/1995	Millipedes of Ireland	
	(Polydesmus angustus)				
millipede	Eyed Flat-backed Millipede (Nanogona	1	02/10/1995	Millipedes of Ireland	
	polydesmoides)				
millipede	Ophyiulus pilosus	1	02/10/1995	Millipedes of Ireland	
millipede	White-legged Snake Millipede	1	02/10/1995	Millipedes of Ireland	
	(Tachypodoiulus niger)				
terrestrial mammal	Eastern Grey Squirrel (Sciurus	1	31/12/2007	The Irish Squirrel Survey 2007	Invasive Species: Invasive
	carolinensis)				Species Invasive Species:
					Invasive Species >> High
					Impact Invasive Species
					Invasive Species: Invasive
					Species >> EU Regulation No.
					1143/2014 Invasive Species:
					Invasive Species >>
					Dogulation C I 477 (Iroland)
terrestrial mammal	West European Hedgehog (Erinaceus	1	23/03/2023	Hedgehogs of Ireland	Protected Species: Wildlife Acts
	europaeus)				

Species list for H6734

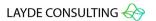
Species group	Species name	Record count	Date last record	Title of dataset	Designation
bird	Barn Swallow (Hirundo rustica)	1	14/04/2012	Birds of Ireland	Protected Species: Wildlife Acts Threatened Species: Birds of Conservation Concern Threatened Species: Birds of Conservation Concern >> Birds of Conservation Concern -
bird	Common Bullfinch (Pyrrhula pyrrhula)	1	14/04/2012	Birds of Ireland	
bird	Common Buzzard (Buteo buteo)	1	18/05/2012	Birds of Ireland	
bird	Common Coot (Fulica atra)	1	06/01/2023	Birds of Ireland	Protected Species: Wildlife Acts Protected Species: EU Birds Directive Protected Species: EU Birds Directive >> Annex II, Section I Bird Species Protected Species: EU Birds Directive >> Annex III, Section II Bird Species Threatened Species: Birds of Conservation Concern Threatened Species: Birds of Conservation Concern >> Birds of Conservation Concern ->
bird	Common Moorhen (Gallinula chloropus)	1	06/01/2023	Birds of Ireland	
bird	Common Swift (Apus apus)	1	29/05/2023	Swifts of Ireland	Protected Species: Wildlife Acts Threatened Species: Birds of Conservation Concern Threatened Species: Birds of Conservation Concern >> Birds of Conservation Concern -
bird	Eurasian Jackdaw (Corvus monedula)	3	06/01/2023	Birds of Ireland	AMNOFILET
bird	European Greenfinch (Carduelis chloris)	1	14/04/2012	Birds of Ireland	
bird	Pied Wagtail (Motacilla alba subsp.	1	04/08/2017	Birds of Ireland	
bird	Rock Pigeon (Columba livia)	1	04/08/2017	Birds of Ireland	Protected Species: Wildlife Acts Protected Species: EU Birds Directive Protected Species: EU Birds Directive >> Annex II. Section I Bird

Species group	Species name	Record count	Date last record	Title of dataset	Designation
oird	Rook (Corvus frugilegus)	1	04/08/2017	Birds of Ireland	
bird	Willow Warbler (Phylloscopus trochilus)	1	08/04/2023	Birds of Ireland	
flowering plant	Bluebell (Hyacinthoides non-scripta)	1	27/05/2023	Vascular plants: Online Atlas of	
				Vascular Plants 2012 Onwards	
flowering plant	Japanese Knotweed (Fallopia japonica)	1	12/06/2019	Vascular plants: Online Atlas of Vascular Plants 2012 Onwards	Invasive Species: Invasive Species Invasive Species: Invasive Species >> High Impact Invasive Species Invasive Species: Invasive Species >> Regulation S.I.
flowering plant	Lesser Celandine (Ranunculus ficaria)	1	04/04/2017	Vascular plants: Online Atlas of	
				Vascular Plants 2012 Onwards	
flowering plant	Primrose (Primula vulgaris)	1	26/04/2018	Vascular plants: Online Atlas of	
				Vascular Plants 2012 Onwards	
insect - butterfly	Peacock (Inachis io)	1	24/08/2019	Butterflies of Ireland pre-2022	
insect - hymenopteran	Bombus (Bombus) terrestris	1	04/04/2017	Bees of Ireland	
insect - moth	Angle Shades (Phlogophora meticulosa)	1	16/07/2023	Moths Ireland	
insect - moth	Buff Footman (Eilema depressa)	1	16/07/2023	Moths Ireland	
insect - moth	Burnished Brass (Diachrysia chrysitis)	1	16/07/2023	Moths Ireland	
insect - moth	Common Carpet (Epirrhoe alternata)	1	16/07/2023	Moths Ireland	
insect - moth	Dark Arches (Apamea monoglypha)	1	16/07/2023	Moths Ireland	
insect - moth	Death's-head Hawk-moth (Acherontia atropos)	1	23/10/2013	Moths Ireland	
insect - moth	Dotted Clay (Xestia baja)	1	16/07/2023	Moths Ireland	
insect - moth	Double Dart (Graphiphora augur)	1	16/07/2023	Moths Ireland	
insect - moth	Double-square Spot (Xestia triangulum)	1	16/07/2023	Moths Ireland	
insect - moth	Dun-bar (Cosmia trapezina)	1	16/07/2023	Moths Ireland	
insect - moth	Flame Shoulder (Ochropleura plecta)	1	16/07/2023	Moths Ireland	
insect - moth	Four-spotted Footman (Lithosia quadra)	1	16/07/2023	Moths Ireland	
insect - moth	Heart & Dart (Agrotis exclamationis)	2	16/07/2023	Moths Ireland	
insect - moth	Large Yellow Underwing (Noctua pronuba)	1	16/07/2023	Moths Ireland	
insect - moth	Light Arches (Apamea lithoxylaea)	1	16/07/2023	Moths Ireland	
insect - moth	Mesapamea secalis agg.	1	16/07/2023	Moths Ireland	
insect - moth	Old Lady (Mormo maura)	1	16/07/2023	Moths Ireland	
insect - moth	Rush Wainscot (Archanara algae)	1	16/07/2023	Moths Ireland	
insect - moth	Rustic (Hoplodrina blanda)	1	16/07/2023	Moths Ireland	
insect - moth	Silver Y (Autographa gamma)	1	16/07/2023	Moths Ireland	

Species group	Species name	Record count	Date last record	Title of dataset	Designation
insect - moth	Smoky Wainscot (Mythimna impura)	1	16/07/2023	Moths Ireland	
nsect - moth	Snout (Hypena proboscidalis)	1	16/07/2023	Moths Ireland	
insect - moth	Spectacle (Abrostola tripartita)	1	16/07/2023	Moths Ireland	
insect - true fly	Eristalis arbustorum	1	24/09/1971	Hoverflies (Syrphidae) of Ireland	
insect - true fly	Eristalis tenax	1	25/09/1971	Hoverflies (Syrphidae) of Ireland	
nsect - true fly	Helophilus hybridus	1	24/09/1971	Hoverflies (Syrphidae) of Ireland	
nsect - true fly	Helophilus pendulus	1	24/09/1971	Hoverflies (Syrphidae) of Ireland	
nsect - true fly	Neoascia podagrica	1	24/09/1971	Hoverflies (Syrphidae) of Ireland	
nsect - true fly	Platycheirus albimanus	1	25/09/1971	Hoverflies (Syrphidae) of Ireland	
insect - true fly	Platycheirus granditarsus	1	25/09/1971	Hoverflies (Syrphidae) of Ireland	
insect - true fly	Syrphus vitripennis	1	24/09/1971	Hoverflies (Syrphidae) of Ireland	
terrestrial mammal	Common Pipistrelle (Pipistrellus pipistrellus sensu stricto)	1	20/06/2012	National Bat Database of Ireland	
terrestrial mammal	Eastern Grey Squirrel (Sciurus carolinensis)	1	31/12/1981	Mammal Recording Scheme 1970- 1985 (An Foras Forbartha)	Invasive Species: Invasive Species Invasive Species: Invasive Species >> High Impact Invasive Species Invasive Species: Invasive Species >> EU Regulation No. 1143/2014 Invasive Species: Invasive Species >>
terrestrial mammal	Eurasian Red Squirrel (Sciurus vulgaris)	1	05/10/2018	Mammals of Ireland 2016-2025	Protected Species: Wildlife
terrestrial mammal	European Otter (Lutra lutra)	1	10/08/2008	Road Kill Survey	Protected Species: EU Habitats Directive Protected Species: EU Habitats Directive >> Annex II Protected Species: EU Habitats Directive >> Annex IV Protected Species: Wildlife Acts
terrestrial mammal	Lesser Noctule (Nyctalus leisleri)	2	20/06/2012	National Bat Database of Ireland	Protected Species: EU Habitats Directive Protected Species: EU Habitats Directive >> Annex IV Protected Species: Wildlife Acts

Species group	Species name	Record count	Date last record	Title of dataset	Designation
terrestrial mammal	Soprano Pipistrelle (Pipistrellus pygmaeus)	1	20/06/2012	National Bat Database of Ireland	Protected Species: EU Habitats
					Directive Protected Species:
					EU Habitats Directive >>
					Annex IV Protected Species:
					Wildlife Acts

LAYDE CONSULTING


Invasive Species Management Plan

Proposed Regeneration Scheme, Dublin Street North, Monaghan

Client: Carlin Planning Ltd

Project Reference: P676-3

Issue Date: September 2024

Table of Contents

1.0	INTRODUCTION	1
1.2 1.3 1.4	Project Overview Demolition and Enabling Works Construction Phase of the Project Operational Phase of the Project Legislation & Guidance	1 2 2 2 2
2.0	METHODOLOGY	3
3.0	RECORDED INVASIVE SPECIES WITHIN PROJECT AREA	3
4.0	PRE-CONSTRUCTION SURVEY	5
5.0	INVASIVE SPECIES MANAGEMENT PLAN - OBJECTIVES	5
6.0	PERSONNEL TRAINING & CONTROL TECHNIQUES	5
7.0	BIOSECURITY: PLANT EQUIPMENT	6
8.0	BIOSECURITY: HANDLING / DISTURBANCE OF MATERIALS	6
	Excavations, movement of material, disturbance and transportation Disposal of Materials Offsite	6 7
9.0	EXCLUSION ZONES	8
10.0	USE OF HERBICIDES OR CHEMICAL TREATMENT PRODUCTS	8
11.0	SPECIFIC GUIDANCE: JAPANESE KNOTWEED	10
	Option 1: Exclusion Zones and Buffer Areas Option 2: Eradication of Japanese Knotweed	10 10
12.0	SPECIFIC GUIDANCE: CHERRY LAUREL	13
13.0	SPECIFIC GUIDANCE: HIMALAYAN HONEYSUCKLE	14
14.0	SPECIFIC GUIDANCE: BUDDLEIA	14
15.0	SPECIFIC GUIDANCE: WALL CONTONEASTER	15
16.0	SPECIFIC GUIDANCE: SYCAMORE	16
17.0	POST- CONSTRUCTION & OPERATIONAL PHASE	17
	UPDATING OF INVASIVE SPECIES MANAGEMENT PLAN	17
Annond	ione	

AppendicesAppendix 1 – Invasive Species Survey map

1.0 INTRODUCTION

Layde Consulting was commissioned by Carlin Planning Ltd to prepare an Invasive Species Management Plan for a proposed Regeneration Scheme within Monaghan town, extending to lands at the rear of Dublin Street North. Following the results of a Preliminary Ecological Assessment (PEA) carried out for the site, non-native and invasive species where identified within the proposed development area. As a result, a detailed Invasive Species Survey was carried out between April 2023 to August 2024 for the project area, and the results of the survey have been used to develop this Invasive Species Management Plan (herein referred to as the 'ISMP').

The purpose of this document is to describe the options available for managing and preventing the spread of non-native invasive alien plant species (herein referred to as 'IAS') recorded within the site during the construction and operational phases of the development.

This document is intended to be a working document and should be routinely updated by the appointed contractor in order to form a detailed ISMP which will contain site specific mitigation measures. The detailed ISMP should be updated prior to the commencement of site works and also for the operational phase (inclusive of maintenance works).

It is possible that the works carried out during the demolition and construction phases of the development may have the possibility of disturbing stands of non-native invasive plants and/or soils contaminated with non-native invasive plant material. Therefore, the aim of this plan is to avoid or prevent the spread of invasive species, and to prevent either direct or indirect impacts on any habitats, onsite or offsite of the development area.

1.1 Project Overview

The proposed development area (herein termed the 'site') incorporates lands to the rear of Dublin Street North, Monaghan (see Figure 1), and comprises of a mix of urbanised areas, external residential amenity areas, commercial land, and derelict lands comprising of scrub and treelines along St. Davnet's Row and the Old Infirmary area. Under the development proposals it is intended to regenerate the site by demolishing the existing buildings within the site, and constructing a new public access road, car parking and event space, and also enabling the provision of future development plots for commercial and residential uses. As a result, the development proposals also include the removal of vegetation and ground cover, as required, and grading cut/fill works. The proposals also include all necessary infrastructure provisions such as drainage and utilities, paving, surfacing and landscaping.

Figure 1- Proposed development area, lands to the rear of Dublin Street North

1.2 Demolition and Enabling Works

The development proposals intend to demolish all existing buildings inside the application area, some of which have been colonised with non-native plant species. In order to facilitate enabling and demolition works, ground clearance of vegetation will be required, which will likely include the removal / disturbance of non-native and IAS's. The demolition phase will also require the haulage of materials offsite for disposal, therefore works associated with the demolition and ground clearance / enabling works phase may have the potential to disturb and spread invasive alien species (IAS) within the site area.

1.3 Construction Phase of the Project

Construction works will involve the removal and clearance of ground level vegetation, and will require the excavation of soils and subsoil surfaces as part of the cut / fill grading processes. Spoil materials will be exported from site, with new materials being imported. Therefore, works associated with the construction phase also have the potential to disturb and spread invasive alien species (IAS) within the site area.

1.4 Operational Phase of the Project

Potential to spread or disturb invasive species within the development area during the operational phase will effectively be negligible, as all IAS's will either be eradicated or removed from site during the enabling works, demolition or construction phases.

1.5 Legislation & Guidance

The primary controlling legislation relating to the spread of invasive species within Ireland falls under the remit of the following documents:

Invasive Alien Species Regulation (Regulation (EU) 1143/2014) includes a set of measures to be taken across the EU in relation to invasive alien species. The core of the Regulation is the list of Invasive Alien Species of Union concern (Union List) which are subject to restrictions and measures set out in the Regulation. The IAS regulations set out restrictions on keeping, importing, selling, breeding, growing and releasing listed IAS into the environment. Within the document all Member States are required to:

- take action on pathways of unintentional introduction (i.e. prevention);
- take measures for the early detection and rapid eradication of these species; and
- manage species that are already widely spread in their territory.

The European Communities (Birds and Natural Habitats) Regulations 2011 (Statutory Instrument 477/2011) and Amendment 2015 (S.I. No. 355/2015) also contains specific provisions that govern the control of listed invasive species. Within the guidance it is an offence to release or allow to disperse or escape, to breed, propagate, import, transport, sell or advertise species listed on Schedule 3 of the regulations without a Licence. The two regulations that deal specifically with this scheduled list of species are:

- Regulation 49: Prohibition of introduction and dispersal of certain species; and,
- Regulation 50: Prohibition on dealing in and keeping certain species.

Under legislation the following is prohibited in connection with IAS:

- Dumping invasive species cuttings in the countryside;
- Planting or otherwise causing to grow in the wild (hence the landowner should be careful not to cause further spread);

- Disposing of invasive species at a landfill site without first informing the landfill site that the waste contains invasive species material (this action requires an appropriate licence);
- Moving soil which contains specific invasive species in the Republic of Ireland unless under a licence from National Parks and Wildlife Service (NPWS).

In addition to the legislative context, the principle of controlling IAS is contained with National Biodiversity Action Plan (NBAP) 2023-2030, which aims to reduce the risk of introduction and/or spread of new species.

2.0 **METHODOLOGY**

This ISMP, along with the mitigation measures outlined therein, takes into consideration the most relevant guidance documents which would be applicable to the IAS's identified within the site area. Although not limited to the following documents, this list provides the main guidance for managing and controlling the spread of IAS's, particularly for the IAS's identified within the development area:

- NRA "Guidelines for the Management of Noxious Weeds and Non-Native Invasive Plant Species on National Roads", National Roads Authority, Dublin (2010);
- The Management of Invasive Alien Plant Species on National Roads Standard (TII 2020)
- Best Practice Management Guidelines for Japanese Knotweed (Invasive Species Ireland, 2015);
- Managing Japanese Knotweed on Development Sites (version 3, amended in 2013 and withdrawn in 2016): The Knotweed Code of Practice (Environment Agency, 2013);
- Irish Water (2016a). Guidance on the Management of Japanese knotweed. Irish Water. Dublin, Ireland.
- Managing Invasive Non-native Plants in or near Freshwater (Environment Agency, 2010);
- Circular Letter NPWS 2/08 Use of Herbicide Spray on Vegetated Road Verges (National Parks and Wildlife Service 2008):
- IFI Biosecurity Protocol for Field Survey Work IFI (2010)

3.0 RECORDED INVASIVE SPECIES WITHIN PROJECT AREA

This section presents a summary of the Invasives Species Survey carried out by Layde Consulting in August 2023. The summary aims to provide a concise description of IAS's identified within the project area, along with the site locations of each species. On this basis the control measures and options for managing each species is provided thereafter.

The Invasive Species Survey recorded the spatial presence of IAS's within the development area (see Appendix 1 for IAS Survey map). A summary of the identified IAS's and locations are presented below in Table 1.

Note: for the purpose of future management and recording keeping, each IAS has been assigned an Identification ID, which will ensure future references will remain consistent.

Table 1. Summary of IAS's identified within the project area.

Target ID	Species	Location (ITM)		Impact Level	Regulations
1	Buddleia	667461	833669	Medium	
2	Buddleia	667461	833686	Medium	No specified regulation
4	Buddleia	667451	833695	Medium	Follow Guidance on
	Wall Contoneaster			Medium	Management Principles
5	Buddleia	667441	833707	Medium	

Target	Species	Location (ITM)		Impact	Regulations
ID	·		, ,	Level	_
9	Buddleia	667460	833739	Medium	
10	Himalayan Honeysuckle	667472	833733	Medium	
	Buddleia			Medium	
11	Buddleia	667456	833749	Medium	
12	Japanese Knotweed	667438	833739	High	Controlled under
14	Japanese Knotweed	667420	833746	High	S.I.477/2011
					3 rd Schedule Part 1
15	Buddleia	667402	833752	Medium	No specified regulation
	Cherry Laurel			High	Follow Guidance on
16	Buddleia	667390	833776	Medium	Management Principles
17	Japanese Knotweed	667384	833798	High	Controlled under
					S.I.477/2011
					3 rd Schedule Part 1
17	Buddleia	667332	833791	Medium	
19	Buddleia	667470	833688	Medium	No specified regulation Follow Guidance on
21	Buddleia	667491	833727	Medium	
23	Himalayan Honeysuckle	667519	833776	Medium	Management Principles
	Buddleia			Medium	
24	Buddleia	667496	833746	Medium	
25	Buddleia	667486	833751	Medium	
30	Buddleia	667483	833744	Medium	
31	Buddleia	667454	833745	Medium	
32	Buddleia	667421	833758	Medium	
33	Buddleia	667412	833766	Medium	
34	Buddleia	667396	833765	Medium	
35	Buddleia	667402	833752	Medium	
36	Buddleia	667455	833702	Medium	
37	Buddleia	667411	833757	Medium	
40	Buddleia	667422	833680	Medium	
41	Buddleia	667355	833742	Medium	
42	Buddleia	667347	833732	Medium	
44	Buddleia	667327	833762	Medium	
45	Buddleia	667429	833688	Medium	
-	Sycamore	Various I	locations	Medium	

Note: Japanese Knotweed is controlled and regulated under the 3rd Schedule Part 1 of Statutory Instrument S.I.447/2011. The remaining IAS's and non-native plant species are not contained with the 3rd Schedule, however these species are considered to pose a medium to high risk under the right conditions of spreading, and are thus managed under relevant guidance documents and management practices.

Buddleia (*Buddleja davidii*), Cherry laurel (*Prunus laurocerasus*), Himalayan honeysuckle (*Leycesteria Formosa*), Wall cotoneaster (*Cotoneaster horizontalis*) and Sycamore (*Acer pseudoplatanus*) are not included in the 3rd Schedule. Therefore, their presence at the site does not have the potential to lead to an offence under the Birds and Natural Habitats Regulations 2011 (SI 477 of 2011).

However, the National Biodiversity Centre (NBDC) notes that under the right ecological conditions these species may have an impact on the conservation goals of a European site or impact on a water body achieving good/high ecological status under the Water Framework Directive (Directive 2000/60/EC).

4.0 PRE-CONSTRUCTION SURVEY

Given the potential timeframe lag between the planning and design stage of the project to the site preparation, demolition and construction phase, it is possible that the areas identified with IAS's may have changed spatially from the initial Invasives Species Survey, and new IAS may be found within the project area which was not previously identified within the Invasives Species Survey.

Therefore, it is recommended to undertake a pre-construction survey of invasive species prior to demolition and enabling works, and to update this ISMP accordingly. The details of the re-survey should provide an approximate area and density of plant species, and a record made of any changes to the findings of the initial Invasive Species Survey.

Should any species be found that is not included within this ISMP, then the plan should be updated to include control measures and appropriate management or mitigation, as required.

5.0 INVASIVE SPECIES MANAGEMENT PLAN - OBJECTIVES

The key objectives outlined within this ISMP are to:

- Review all identified IAS's located inside the project area, and to maintain records of all IAS's which are identified during the pre-construction / setup phases, and also during the construction, post-construction and operational phases of the development;
- To ensure that IAS's do not encroach within the site, and to prevent the spreading of IAS's
 from the site area either through the disturbance of soil / subsoil materials, or through
 contamination of soils to be removed offsite;
- To manage, control or remove all IAS's identified within the site. This may be carried out through a range of treatment processes (discussed later within this ISMP), and should adhere to all relevant good practice guides for managing IAS's and in accordance with regulations and Statutory Instruments etc;
- The ISMP aims to provide a document relating specifically to the site and project area, and should record all control measures, techniques and options used for managing IAS's during all phases of the development. The document should be considered as a live document and should be updated accordingly throughout the lifespan of the project.

6.0 PERSONNEL TRAINING & CONTROL TECHNIQUES

All personnel working onsite should be trained and made aware of the ISMP, and the presence of ISA's. This should be included for all induction training exercises for new personnel working at the site, and should be reviewed annually throughout the lifespan of the project, as required;

- Personnel are at all times to be mindful of the threat posed by the spread of invasive species and to take all possible precautions to ensure that their actions do not result in the accidental movement of contaminated material:
- All PPE must be cleaned thoroughly before entering the works area and exclusion zones.
 Similarly, all individuals must thoroughly inspect their clothing and PPE before leaving the site or works area, in order to ensure that seeds, rhizomes, or other plant fragments are not stuck or attached to their clothing;
- Designated wash-down areas should be provided within each works area and lined with appropriate geo-textile materials within each exclusion zone. As a minimum, wash buckets, sole picks and bristled brushes should be provided for each wash-down area. All footwear <u>must</u> be thoroughly cleaned before leaving the exclusion zone or works area;
- Wash-down materials from PPE equipment or machinery should be appropriately contained and removed offsite using the relevant measures outlined within this ISMP.

7.0 BIOSECURITY: PLANT EQUIPMENT

Plant equipment, including excavators, dump trucks, HGV's and all forms of static or mobile plant has the potential to carry contaminated soils and IAS materials offsite, or to other positions of the site particularly within exclusion zones. It is common for plant equipment to be brought temporarily to site for specific phases of works, and then to be subsequently taken to other sites or projects directly. Therefore, the following should be adhered to:

- All plant machinery which is to be used within an exclusion zone should be clean on arrival to the site and should be stored within a specified site compound or storage area when not in use. The storage area / site compound must be covered by geotextile materials, and any build up of debris should be stored and contained as required within this ISMP;
- Plant equipment used within an exclusion zone should be cleaned within a designated wash-down area before moving from one area of a site to another;
- The number of machines that enter exclusion zones or come into contact with contaminated material should be kept to a minimum;
- Machinery (especially HGVs) should be kept within a designated haulage route, marked by appropriate fencing and signage;
- All plant operating within an exclusion zone should be thoroughly washed within a designated geo-textile lined wash-down area before exiting the exclusion zone, paying particular attention to any part of the machinery or equipment that may have come into contact with an invasive species or contaminated clay e.g. tracks/tyres, buckets, machine arms, wheel arches etc;
- All equipment and machinery must be certified as clean by the Ecological Clerk of Works (ECoW) before they are removed from the exclusion zone; and
- Materials or debris generated within the wash-done area should be contained and managed in accordance with the techniques outlined within this ISMP.

8.0 BIOSECURITY: HANDLING / DISTURBANCE OF MATERIALS

8.1 Excavations, movement of material, disturbance and transportation

Invasive species can easily spread to new areas, particularly within disturbed grounds such as construction sites, and can spread by the re-growth of cut fragments or root material (rhizomes). Therefore, excavation works and ground clearance including site clearance of vegetation has potential to spread IAS's if not managed or handled in accordance with recommended guidance.

- When geotextile material is required to be excavated and removed from site, it should be treated and handled in exactly the same way as soils/subsoils contaminated with IAS's;
- If soil or geotextile materials are imported to the site for landscaping, infilling or laying of haulage routes etc, then the contractor should gain documentation from suppliers that the material is free from invasive species;
- Excavation and HGV loading areas should be defined and planned for in advance, with geo-textile materials laid throughout the loading area and haulage route, up to 2m buffer either side;
- Where contaminated material is being loaded or excavated, particular care must be taken in order to ensure that a spillage is avoided at all times;
- In the event that spillages of material occur, either through accidental release or as a result of excavation works, then spilled materials should be cleaned up immediately;
- Wherever possible, haulage and movement of materials should not occur within exclusion zones, unless absolutely necessary as part of the program of works required for the project;

- Only vehicles required for essential works, including site investigation works, will be brought on site and the number of visits minimised as much as practicable;
- Haulage routes and access tracks should be delineated and marked or fenced off, and exclusion fencing must be erected and clearly visible wherever required. All site personnel should be made aware of exclusion zones, and appropriate signage should be installed to the same effect;
- Wash-down areas with the use of power washing and suitable wheel wash facilities should be provided at all exit points from the site, and all plant should be washed thoroughly, with all mud and debris removed prior to leaving the site. Geo-textile material should be laid throughout the wash-down area, and all contaminated materials and debris should be collected and treated for disposal;
- Tracked machines have a high potential for spreading IAS's and contaminated soil materials, therefore particular attention should be paid to thoroughly washing down tracked machines before moving offsite. The cleaned machines should be inspected by a suitably qualified ECoW or trained personnel prior to leaving site.

8.2 **Disposal of Materials Offsite**

Ideally, treatment of IAS's should be undertaken onsite where practically possible in order to prevent the unintentional spread of invasive species. However, where the above treatment options are not possible because of constraints within the site to either treat or contain excavated material, or where there is a lack of space or depth needed to implement suitable control measures, or where time constraints do not permit the effective treatment measures to be carried out prior to works, then the removal of excavated material may be the only option. Therefore, the following should be adhered to:

- Where it is necessary to dispose of materials offsite, then it should be noted that the movement of invasive plant material requires a licence from the National Parks and Wildlife Service (NPWS) under Section 49 of the European Communities (Birds and Natural Habitats) Regulations, 2011 (as amended). Therefore, prior to commencing site setup, clearance or construction works, a licence must be obtained from the NPWS in advance.
- Invasive species collected within the site must be disposed of at licensed waste facilities or composting sites, appropriately buried, or incinerated having regard to relevant legislation. Where there are small amounts of IAS material (such as small volumes of Knotweed or Himalayan Balsam, including flower heads, seeds, stems, root material or leaves etc) to be removed it may be possible to double bag the material and send it to a licenced waste facility for disposal. Where the amount of material is larger in volume, it will be necessary to haul it from site to a suitably licenced waste facility;
- It should be noted that some invasive species plant material or soil containing residual herbicides may be classified as either 'hazardous waste' or 'non-hazardous waste' under the terms of the Waste Management Acts, and both categories may require special disposal procedures or permissions. Advice should be sought from a suitably qualified waste expert regarding the classification of waste and the suitability of different disposal measures:
- As discussed in sections below, soil and subsoil materials may be screened for rhizomes and root material, however all soils excavated within affected areas should be treated as contaminated. Any soil or screened materials to be removed offsite should be taken to a licensed faciality for disposal;

Before commencing site works, the operators or contractor should be in receipt of all necessary licenses required to transport contaminated materials offsite, and waste transfer documentation retained for future inspection. A record of all materials should be kept for offsite disposal, to include as a minimum the volumes of materials, nature and waste classifications, haulage details and which licensed facility the materials were taken to. In addition, a record should be kept for any documentation needed in accordance with waste handling, transfer and disposal licenses.

9.0 EXCLUSION ZONES

Exclusion zones should be set up around areas affected by IAS's as listed under Invasive Alien Species Regulation (Regulation (EU) 1143/2014) or The European Communities (Birds and Natural Habitats) Regulations 2011 (Statutory Instrument 477/2011) and Amendment 2015 (S.I. No. 355/2015), inclusive of any amendments, in order to avoid the unintentional spreading of IAS's within the site area, or offsite where excavated materials are to be removed. Where exclusion zones are required, then the following should be adhered to:

- Exclusion zones must be clearly marked or fenced off, and made easily identifiable to site personnel in order to prevent accidental incursion into the affected area;
- The extent of the exclusion zone should be based on the extent of the affected area where IAS's have been recorded, but should also take into consideration the extent of rhizome or roto system associated with the species. This may be up to 7m beyond the extent of the stands, or greater depending on the species identified;
- Entry and exit points to the exclusion zones should be clearly identifiable, and all site personnel should be notified as to where these points are located;
- Exclusion zones must also be set up to in order keep machinery and personnel away from any stored contaminated clay or plant material;
- Only vehicles required for essential works will allowed within an exclusion zone, and the number of visits minimised as much as practicable;
- Any personnel or machinery accessing a designated exclusion zone must be subject to strict biosecurity protocols, as outlined within SECTION 6 – 8 of this ISMP;
- Exclusion zones should remain fenced off and implemented for the entire duration of the project, until the IAS's have been effectively treated or removed;
- Site hygiene signage, specific to the management of the invasive species identified within the site, will be erected and made clear to all site personnel; and
- All site personnel should be appropriately trained as per SECTION 6 of this ISMP.

10.0 USE OF HERBICIDES OR CHEMICAL TREATMENT PRODUCTS

- If herbicide is to be applied as a treatment option, it likely that application of the herbicide may be required for more than one year, and up to five years depending on the species being applied to, in order to ensure that plant control measures have been effective. The length of treatment may also vary depending on the type of herbicide used, i.e. highly persistent herbicides may eradicate a plant within one to two years, whereas non-persistent herbicides (such as glyphosate) may take over a period of at least three years to ensure the successful eradication of the plants;
- A range of herbicides are available for the chemical control of IAS's, and includes herbicides such as Glyphosate, 2,4-D Amine. Glyphosate is non-persistent and can be used near water but it is not selective (i.e. it is a broad spectrum chemical and will impact all plant species), whereas 2,4-D Amine can be persistent for up to one month, and can also be used near water but is more selective on certain plants.

- The selection of chemicals by the contractor and supervising ecologist will depend on seasonal factors, site conditions, proximity to water, surrounding habitats etc;
- In order to ensure that the use of herbicides does not contravene legislation, the contractor must comply with Circular Letter NPWS 2/08 Use of Herbicide Spray on Vegetated Road Verges from the National Parks and Wildlife Service dealing with the application on to non-target areas. In addition, a qualified and experienced contractor will be employed to carry out all treatment works:
- If chemical or herbicide treatment is to be carried out, then it is recommended that the appointed contractor prepares a site-specific treatment plan in accordance with the relevant guidelines before commencing works;
- Should treatment be carried out within close proximity to water, or where there is a risk of contaminating watercourses, then the choice of herbicide should be limited to formulations of Glyphosate and 2,4-D amine that are approved for use near water, or similar approved herbicides. It is recommended that chemical control via the application of herbicides is not carried out within 5m of any existing surface water feature, including local drainage infrastructures. If herbicide application is necessary within this area, then only herbicides which are approved for use near water should be used:
- Herbicides should be applied during peak growing periods (typically from May -September), however local climate conditions such as temperature and rainfall can determine the effectiveness of treatment applications. Treatment outside the peak growing season is often ineffective, as plants are dormant during winter periods and do not take in the herbicide treatment;
- In the case of Knotweed, depending on weather and temperatures in the days following the initial treatment, and to ensure optimal uptake of herbicide into the rhizome system, a second similar treatment may be required (usually within ten days), before the internal vascular system is no longer capable of translocating the herbicide to the root system;
- A systemic herbicide (e.g. Picloram) and/or a bioactive formulation such as glyphosate based Round-Up Proactive may be sprayed on foliage during dry weather or injected directly into the stems of IAS's. Strong systemic herbicides are most effective at targeting the persistent roots, however it should be noted that they may also persist in the soil and/or kill surrounding vegetation;
- Foliar treatment (spraying) is usually applied with a sprayer such as a knapsack sprayer or a larger spray system. It is important to use a treatment dye to identify clearly all areas treated. Foliar treatment is an efficient way to treat large areas of invasive plants, or to spot-treat individual plants that are difficult to remove mechanically (such as Japanese Knotweed). While the upper surface of the leaves will be easier to treat, it is also important to treat the leaf under surface as Knotweed possesses many stomata openings on the leaf under surface:
- Injecting herbicides directly into the stem of the plant is a common method for controlling and eradicating IAS's, however this method is more suitable for smaller stands given that it is labour intensive. This form of treatment typically requires a higher concentration of the active ingredient than is used in foliar applications, and involves the use of a specialist herbicide injection tool whereby the injection tool injects the herbicide directly into the
- Following application of herbicide treatment during the first season, annual spot-checks should be conducted during the early growing season in order to identify any re-growth of
- Regrowth may occur in subsequent years, and if this is the case then further herbicide treatments should be undertaken each year until no regrowth occurs;
- Manufacturers guidance and current regulations on the use of chemical or herbicide treatment should be strictly adhered to at all times.

11.0 SPECIFIC GUIDANCE: JAPANESE KNOTWEED

The section relates to the specific handling and management options for Japanese Knotweed [Fallopia japonica] and should be read in junction with the relevant regulations and Statutory Instruments. The information contained within this report is relevant to current guidance and legislation, however should guidance and legislation be changed or updated then the ISMP should be revised accordingly. Based on current guidance and legislation, the following management options are available under license:

Option No.1: None eradication methods:

Exclusion zones and buffer areas

Option No.2: Control or eradicate Japanese Knotweed through:

- Stockpile and treatment processes
- Chemical control and herbicide applications
- Excavation of materials and burial onsite
- Excavation of materials for offsite disposal

11.1 Option 1: Exclusion Zones and Buffer Areas

The option of installing exclusion zones and buffer areas has been considered under SECTION 9 of this ISMP and is applicable where Option No.2 for the control or eradication of Japanese Knotweed is not possible.

11.2 Option 2: Eradication of Japanese Knotweed

11.2.1 Stockpile and treatment

This option will require sufficient time to undertake the construction of the stockpile area, geotextile lining, and time required for the treatment process to be effective. Plant material, such as cut stems and foliage, excavated rhizomes or crowns, are emplaced within the stockpile area and treated using herbicides or chemical treatment processes. This process can take several years to ensure plant material is dead, and that no regrowth occurs. Should this option be appraised, then the following should be implemented:

- The stockpile area should be constructed using a heavy-duty root barrier membrane and geotextile liner laid out at the stockpile area, and all infested material should be placed on top of it creating a low flat-topped berm;
- The stockpile area should have a buffer created around the edges of the root barrier, in order to provide a buffer for avoiding spillage of contaminated material onto unprotected soils. No material should be placed within the buffer zone;
- The root barrier membrane should be protected from damage by vehicles using a geotextile liner comprising of a sand layer emplaced directly above and below the root barrier membrane, and surfaced with a layer of cleaned hard core or other suitable material;
- Soils infested with Japanese Knotweed will be excavated to a depth of at least c. 5-7m (or to a depth where no Japanese Knotweed root systems are visible) and stockpiled at a nonenvironmentally sensitive area of open space, on lands within the ownership of the applicant;

- The stockpile area will be fenced off and sign-posted as SECTION 9 of this ISMP. Stockpiled materials should be treated using a herbicide either by stem injection, or foliar application for a period of at least three years (and may require reapplications of up to 5 years), as described in SECTION 10 of this ISMP;
- In order to encourage regrowth of knotweed during the herbicide treatment process, it is recommended turn stockpiled material. The effectiveness of herbicide treatment of Japanese Knotweed is increased during plant regrowth;
- An ECoW's should oversee the stockpile treatment process, and all site personnel should be trained to understand the role and authority of the clerk of works. After construction works are complete, follow up surveys will be conducted to survey for regrowth. If regrowth is observed, then additional treatment will be conducted;
- All excavation and handling of materials, along with biosecurity controls, should adhere strictly to SECTIONS 7 & 8 of this ISMP as required.

11.2.2 Chemical control and herbicide applications

Chemical treatment involves the application of a herbicide to invasive species such as Japanese Knotweed stands without any excavation or removal of the plant material, and is considered to be a viable option for when the excavation of IAS's cannot be carried out, or when sufficient time is available between the application phase and the when construction works are to be carried out. If chemical or herbicide treatment is to be used, then the following points should be considered:

- Should herbicides be required as the treatment option, then the measures outlined within SECTION 10 of this ISMP should be adhered to;
- Herbicides should be applied during peak growing periods (typically from May -September), however local climate conditions such as temperature and rainfall can determine the effectiveness of treatment applications. Treatment outside the peak growing season is often ineffective, as plants are dormant during winter periods and do not take in the herbicide treatment;
- For the effective treatment of Knotweed, depending on weather and temperatures in the days following the initial treatment, and to ensure optimal uptake of herbicide into the rhizome system, a second similar treatment may be required (usually within ten days), before the internal vascular system is no longer capable of translocating the herbicide to the root system;
- A systemic herbicide and/or a bioactive formulation such as glyphosate based product may be sprayed on foliage during dry weather or injected directly into the stems of IAS's. Strong systemic herbicides are considered to be the most effective at targeting persistent roots such as Japanese Knotweed;
- Foliar treatment is an efficient way to treat large areas of Knotweed, or to spot-treat individual plants that are difficult to remove mechanically. While the upper surface of the leaves will be easier to treat, it is also important to treat the leaf undersurface as Knotweed possesses many stomata openings on the leaf under surface;
- Injecting herbicides directly into the stem of the plant is a common method for controlling and eradicating Knotweed, however this method is more suitable for smaller stands given that it is labour intensive. This form of treatment typically requires a higher concentration

of the active ingredient than is used in foliar applications, and involves the use of a specialist herbicide injection tool whereby the injection tool injects the herbicide directly into the plant approximately 20-30cms from the base of each cane (between the 1st and 2nd nodule);

- Following application of herbicide treatment during the first season, annual spot-checks should be conducted during the early growing season in order to identify any re-growth of the plant. In the case of Japanese Knotweed, it is likely that retreatment will be required for at least 3 years, but can occur up to 5 years from the initial treatment;
- Regrowth may occur in subsequent years, and if this is the case then further herbicide treatments should be undertaken each year until no regrowth occurs;
- Manufacturers guidance and current regulations on the use of chemical or herbicide treatment should be strictly adhered to at all times.

11.2.3 Excavation and Burial Methods

Excavation and burial methods can be employed, particularly where time constraints of the project do not enable the effective treatment of plants using chemical or herbicide processes. However, the following should be considered when using the excavation and burial methods:

- In order to excavate Japanese Knotweed, the lateral extent of the rhizome system should be taken into consideration and may require up to 7m radius of the plant to be excavated;
- In addition, excavations should be carried out to a depth of at least ~5m (or to a depth where no Japanese Knotweed root systems are visible), and then buried at a designated area within the proposed development site boundary at a minimum depth of 5m. Therefore, sufficient space should be accounted for in order to appraise the excavation and burial method as a viable control option;
- Buried plant materials and contaminated soils should be covered with a root barrier membrane layer before infilling it completely to c. 5m deep with inert fill or topsoil;
- Buried materials should be recorded and mapped in order to prevent future excavations from allowing regrowth to occur. Japanese Knotweed is capable of surviving while buried for many years, and can regrow if disturbed and brought to the surface;
- Burial of plant material and contaminated soils should not be carried out near services (i.e. utilities, pipelines, cabling etc), as disturbance may occur from future works associated with maintaining or improving infrastructure;
- Future owners of the land should be provided the treatment records, including areas of excavation and burial, and should be advised of the potential for regrowth if disturbed.

11.2.4 Excavation of materials for offsite disposal

Should insufficient space or depth of subsoils not be available, then excavation of plant material for offsite disposal may be considered. If this is the case, then points outlined within SECTION 8.2 of this ISMP should be adhered to.

12.0 SPECIFIC GUIDANCE: CHERRY LAUREL

Although Cherry Laurel is not contained within the 3rd Schedule Part 1 of S.I.477/2011, however this section relates to the specific handling and management options for Cherry Laurel [*Prunus laurocerasus*] and should be read in junction with the relevant regulations and guidance. Should guidance or legislation be changed or updated, then the ISMP should be revised accordingly. Based on good practices for the management or control of Cherry Laurel, the following should be adhered to:

- All biosecurity measures outlined within this ISMP should be strictly adhered to at all times;
- If plant material is to be removed offsite for disposal, then the protocol outlined within SECTION 8.2 of this ISMP should be followed:
- Preliminary clearance should comprise of the removal and treatment of the Cherry Laurel.
 Normally this would begin in the densest areas of infestation and work towards the areas of lower density;
- Where possible, young seedlings should be pulled from the ground by hand while ensuring
 the root structure is attached. If this is not possible then younger single stemmed
 seedlings should be cut and treated in the same manner as larger stems;
- Large stems may require cutting by chainsaw or mechanical means and should be cut as close to the ground as possible. Bulk cut materials can then be chipped or removed to allow follow up work and prevent regrowth;
- Plants which have been previously cut back and are multi-stemmed should be cut to stump level, and remaining plant material should be treated with a glyphosate herbicide chemical (e.g. Roundup Biactive XL);
- Herbicide chemicals should be applied directly to the cut surface immediately after cutting,
 or for larger stems then stumps can be drilled and the herbicide applied directly into the
 drilled hole. In order for the herbicide to remain effective, chemical treatment should only
 be undertaken during periods of dry weather, where possible for at least 12 hours after
 and during frost free conditions;
- Should larger areas of Cherry Laurel need to be treated, then herbicides should be sprayed over the area immediately following cutting of plant materials, and tracer dyes should be used in order to determine full coverage has been achieved;
- Follow up treatment may be required in order to treat further growth, but also to treat/remove the growth of any seedlings (which may be numerous in the case of Cherry Laurel). This can be carried out by spraying of herbicide treatment, or through hand pulling of individual plants if small enough;
- An alternative option to the above is to excavate the Cherry Laurel entirely, inclusive of root systems, and to treat the remaining area with glyphosate herbicides. However, follow up treatment and monitoring may be required in order to ensure that all plant material has successfully been eradicated.

13.0 SPECIFIC GUIDANCE: HIMALAYAN HONEYSUCKLE

Himalayan honeysuckle (*Leycesteria Formosa*) is not contained within the 3rd Schedule Part 1 of S.I.477/2011, however this section relates to the specific handling and management options for Himalayan honeysuckle, and should be read in junction with the relevant regulations and guidance. Should guidance or legislation be changed or updated, then the ISMP should be revised accordingly. Based on good practices for the management or control of Buddleia, the following should be adhered to:

- All biosecurity measures outlined within this ISMP should be strictly adhered to at all times;
- If plant material is to be removed offsite for disposal, then the protocol outlined within SECTION 8.2 of this ISMP should be followed;
- Himalayan honeysuckle can safely be removed from site following the same methods used for clearing any trees or large shrubs, as it does not possess a rhizomatic root system;
- Care should be taken to remove the plants before seeds develop, and not to spread any remaining seeds on the plant;
- The use of herbicide treatment on Himalayan honeysuckle is generally not required, however for larger infestations or where plants cannot be removed mechanically, then treatment of Himalayan honeysuckle can be undertaken using herbicides. Should herbicides be used, then the guidance outlined within Section 10 of this ISMP should be adhered to:
- Follow up treatment may be required in order to treat further growth, but also to treat/remove the growth of any seedlings which may have developed. This can be carried out by spraying herbicide treatment, or through hand pulling of individual plants if small enough;
- An alternative option to the above is to excavate the Himalayan honeysuckle plants entirely, inclusive of root systems, and to treat the remaining area with glyphosate herbicides. However, follow up treatment and monitoring may be required in order to ensure that all plant material has successfully been eradicated.

14.0 SPECIFIC GUIDANCE: BUDDLEIA

Buddleia (*Buddleja davidii*) is not contained within the 3rd Schedule Part 1 of S.I.477/2011, however this section relates to the specific handling and management options for Buddleia, and should be read in junction with the relevant regulations and guidance. Should guidance or legislation be changed or updated, then the ISMP should be revised accordingly. Based on good practices for the management or control of Buddleia, the following should be adhered to:

- All biosecurity measures outlined within this ISMP should be strictly adhered to at all times;
- If plant material is to be removed offsite for disposal, then the protocol outlined within SECTION 8.2 of this ISMP should be followed;
- Buddleia can safely be removed from site following the same methods used for clearing any trees or large shrubs, as it does not possess a rhizomatic root system;

- Care should be taken to remove the plants before seeds develop, and not to spread any remaining seeds on the plant, as Buddleia produce larger number of seeds which can easily be dispersed by wind action;
- The use of herbicide treatment on Buddleia is generally not required, however for larger infestations or where plants cannot be removed mechanically, then treatment of Buddleia can be undertaken using herbicides. Should herbicides be used, then the guidance outlined within Section 10 of this ISMP should be adhered to:
- Follow up treatment may be required in order to treat further growth, but also to treat/remove the growth of any seedlings which may have developed. This can be carried out by spraying herbicide treatment, or through hand pulling of individual plants if small enough;
- An alternative option to the above is to excavate the Buddleia plants entirely, inclusive of root systems, and to treat the remaining area with glyphosate herbicides. However, follow up treatment and monitoring may be required in order to ensure that all plant material has successfully been eradicated.

15.0 SPECIFIC GUIDANCE: WALL CONTONEASTER

Wall cotoneaster (Cotoneaster horizontalis) is not contained within the 3rd Schedule Part 1 of S.I.477/2011, however this section relates to the specific handling and management options for Wall cotoneaster, and should be read in junction with the relevant regulations and guidance. Should guidance or legislation be changed or updated, then the ISMP should be revised accordingly. Based on good practices for the management or control of Wall cotoneaster, the following should be adhered to:

- All biosecurity measures outlined within this ISMP should be strictly adhered to at all times;
- If plant material is to be removed offsite for disposal, then the protocol outlined within SECTION 8.2 of this ISMP should be followed;
- Cotoneaster root systems are extensive, thus enabling regrowth if the plant is cut back hard and the aerial parts are removed completely. However, Cotoneaster root systems should be removed completely in order to ensure that regrowth of the plant is prevented;
- Although wall Cotoneaster are known to be shallow rooting, the sturdy, widespread roots can be hard to take out of the ground manually - as such caution should be applied to ensure that root systems are removed entirely. Smaller plants can be removed more easily through manual pulling and loosening of soil around roots, although care should be taken to ensure root systems are removed entirely;
- Care should be taken in order to remove the plants before seeds develop, and not to spread any remaining seeds on the plant;
- In the event that mechanically removal is not possible, for example where a wall is to be retained without damage, then herbicide treatment can be used. Should herbicides be used, then the guidance outlined within Section 10 of this ISMP should be adhered to;
- Follow up treatment may be required in order to treat further growth, but also to treat/remove the growth of any seedlings which may have developed. This can be carried out by spraying herbicide treatment, or through hand pulling of plants, if small enough;

- Where herbicide treatment is to be used, then the bark of the plant stem should be scraped back 2 - 3 inches close to the rooting point at ground level in order to expose the cambium. Neat herbicide (such as 100% glyphosate) should be applied to the exposed area:
- In order to be most effective, herbicide treatment of Wall Cotoneaster should be applied during the most active growing season, ideally from mid-March to the end of October;
- Plant die-back should occur within the first 6 weeks, however follow up treatment may be required. Therefore, inspection of plants should be carried out after 6 weeks where herbicide treatment has been applied, and any reapplication of herbicide treatment should be undertaken as soon as possible thereafter.

16.0 SPECIFIC GUIDANCE: SYCAMORE

Sycamore (Acer pseudoplatanus) is not contained within the 3rd Schedule Part 1 of S.I.477/2011, however this section relates to the specific handling and management options for Sycamore, and should be read in junction with the relevant regulations and guidance. Should guidance or legislation be changed or updated, then the ISMP should be revised accordingly. Based on good practices for the management or control of Sycamore, the following should be adhered to:

- All biosecurity measures outlined within this ISMP should be strictly adhered to at all times;
- If plant material is to be removed offsite for disposal, then the protocol outlined within SECTION 8.2 of this ISMP should be followed;
- Sycamore can safely be removed from site following the same methods used for clearing any trees or large shrubs, as it does not possess a rhizomatic root system;
- Care should be taken to remove the trees before seeds develop, and not to spread any remaining seeds on the plant which can be dispersed by wind action;
- The use of herbicide treatment on Sycamore is generally not required if the stumps are to be excavated and removed, however, where the trees cannot be removed mechanically then treatment of Sycamore can be undertaken using herbicides. Should herbicides be used, then the guidance outlined within Section 10 of this ISMP should be adhered to:
- Herbicide chemicals should be applied directly to the cut surface immediately after cutting, or for larger stems then stumps can be drilled and the herbicide applied directly into the drilled hole. In order for the herbicide to remain effective, chemical treatment should only be undertaken during periods of dry weather, where possible for at least 12 hours after and during frost free conditions;
- Plants which have been previously cut back and are multi-stemmed should be cut to stump level, and remaining plant material should be treated with a glyphosate herbicide chemical (e.g. Roundup Biactive XL);
- Follow up treatment may be required in order to treat further growth, but also to treat/remove the growth of any seedlings which may have developed. This can be carried out by spraying herbicide treatment, or through hand pulling of individual plants if small enough.

17.0 POST- CONSTRUCTION & OPERATIONAL PHASE


Given the potential for IAS's to regrow or re-stablish themselves on the site, it is recommended to carry out a post-construction Invasive Species Survey within one year of completion, and to update the ISMP accordingly. Records for any treatment should be maintained for the duration of the project, and follow up treatment should be carried out, where applicable, until no further regrowth of the IAS has occurred.

18.0 UPDATING OF INVASIVE SPECIES MANAGEMENT PLAN

In accordance with the NIS report if there are delays in the progression of the project, and in the event that no works have taken place within 1 year of the surveys, then a resurvey of IAS's and non-native species will need to be undertaken. Should any revisions be made to the preliminary ecological assessment or follow up documents regarding invasive species, then the ISMP should be updated accordingly to reflect these changes. This includes mapping and delineation of IAS's, and also the appropriate management techniques for each respective species.

Once a contractor has been appointed for works, the ISMP should be updated to contain their contact details, schedule of works, methodologies to be used throughout all phases of the development, and the management techniques chosen with regards to IAS's found within the development area. The ISMP should be updated to include a more detailed management strategy for IAS's, and an ECoW's should be appointed to oversee the pre-construction enabling and demolition works, and also for the construction phase of the project.

APPENDICES: Appendix 1

Invasive Species Survey Map

LAYDE CONSULTING

APPENDIX 9.4 ECOLOGICAL SURVEYS FOR BATS

Proposed Regeneration Scheme, Dublin Street North, Monaghan

Client: Carlin Planning Ltd

Project Reference: P676

Issue Date: January 2024

Table of Contents

SUMIN	1ARY	I
1.0	INTRODUCTION	1
1.1 1.2 1.3	Site Overview & Development Proposals Limitations Statement of Authority	1 1 2
2.0	LEGISLATION AND POLICY CONTEXT	2
2.1	Bats (all species)	2
3.0	METHODOLOGY	3
3.1 3.2 3.3 3.4	Desk Study Field Surveys Bat Roost Inspection Surveys Emergence / Re-entry Bat Activity Surveys	3 3 5 5
4.0	SURVEY RESULTS	6
4.1 4.2 4.3	Building Structures Bat Activity Surveys - Trees Transect Surveys	6 19 20
5.0	CONCLUSIONS AND RECOMMENDATIONS	22
5.1	Further Recommendations	24
FIGURE	S	
	L - Proposed development area, lands to the rear of Dublin Street North	
_	2 – Building identification numbers for proposed demolition	
_	3 – Transect route and heat map, 15th August 2023	
Figure 4	4 - Transect route and heat map, 12th September 2023	
Figure 5	5 - Transect route and heat map, 28th August 2024	
Figure 6	6 - Transect route and heat map, 28th September 2024	

APPENDICES

Appendix 1 – Summary of recorded bat activity call logs

SUMMARY

Layde Consulting was appointed by Carlin Planning Ltd to undertake a series of bat activity surveys and potential roost assessments for a proposed Regeneration Scheme within Monaghan town, extending to lands at the rear of Dublin Street North. The proposed development intends to demolish the existing building structures within the site, which comprise of a range of modern buildings, abandoned / disused structures and older buildings which may have potential to be used for bat roosts.

A series of internal and external inspections were undertaken for each building structure, where access was granted or achievable. In addition, a series of bat activity surveys were undertaken during the survey season of 2023 and 2024 wherever possible, in order to determine the presence and species of bats using the site or building structures. Limitations which prevented surveys being undertaken included antisocial behaviour (encountered relatively frequently at the site), and restrictions of access to lands, either as a result of the landowner being uncontactable or denying access to their property.

The results of all external and internal building inspections indicated no presence of bat activity within any of the structures. The results of bat activity surveys also demonstrated no emergence of bats from any of the building structures, although bat activity was noted during each of the surveys over adjoining lands or forested areas. Two species were identified, namely Common Pipistrelle (*Pipistrelle Pipistrellus*) and Soprano Pipistrelle (*Pipistrellus pygmaeus*).

Although it is intended to retain the habitats and trees within the Old Infirmary Hill area, 2No. Ash trees have been scheduled for felling due to excessive basal rot and deadwood. Therefore, ground level bat roost potential surveys were undertaken for trees within the development area, in particular for the Ash trees which are scheduled for felling. Bat activity surveys were also carried out for each tree with no bats being recorded emerging from either tree, although bat activity was observed in the wider area and adjoining forested areas.

A series of transect surveys were also undertaken during the 2023 and 2024 survey seasons, with transects being limited to the public footpath between Old Cross Square and the intersection of St. Davnet's Row, and also along St. Davnet's Row eastwards towards The Diamond. The results of the transect surveys identified Common Pipistrelle and Soprano Pipistrelle along most of the transect route, with the greatest concentration of bat activity being found along the street lit public footpath between Old Cross Square and the intersection at St. Davnet's Row.

Bats were clearly seen foraging around each of the street lights where insects are likely most abundant. In addition, commuting bats were observed coming from the mixed broadleaved and coniferous forested are to the east of the public footpath, and returning, indicating the possibility of potential bat roosts within the neighbouring forested area or buildings. Bat activity was also noted along St. Davnet's Row, where bats were observed to be foraging and commuting along the laneway at relatively low level, particularly within the northwest portion of the laneway. It was noted that a portion of the site is subject to artificial light, either from street lighting along the public footpath area to the east of the site, or from flood lighting within properties to the rear of Dublin Street.

Based on the outcome of the ecological bat surveys carried out as part of this assessment, a number of further recommendations have been stated within this report, which should be adhered to prior to the commencement of the demolition and construction phases of the development.